Loading…
Growth Drivers of Bakken Oil Well Productivity
This paper identifies the drivers of the phenomenal growth in productivity in hydraulically fractured horizontal oil wells producing from the middle member of the Bakken Formation in North Dakota. The data show a strong underlying spatial component and somewhat weaker temporal component. Drivers of...
Saved in:
Published in: | Natural resources research (New York, N.Y.) N.Y.), 2020-06, Vol.29 (3), p.1471-1486 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-455edae076c09958ea02630885be3a950335a04f0e50161401434f432cc53b853 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-455edae076c09958ea02630885be3a950335a04f0e50161401434f432cc53b853 |
container_end_page | 1486 |
container_issue | 3 |
container_start_page | 1471 |
container_title | Natural resources research (New York, N.Y.) |
container_volume | 29 |
creator | Attanasi, E. D. Freeman, P. A. |
description | This paper identifies the drivers of the phenomenal growth in productivity in hydraulically fractured horizontal oil wells producing from the middle member of the Bakken Formation in North Dakota. The data show a strong underlying spatial component and somewhat weaker temporal component. Drivers of the spatial component are favorable reservoir conditions. The temporal component of well productivity growth is driven by increasing the number of fracture treatments and by increasing the volume of proppant and injection fluids used on a per fracture treatment basis. Random Forest, a nonparametric modeling procedure often applied in the context of machine learning, is used to identify the relative importance of geologic and well completion factors that have driven the growth in Bakken well productivity. The findings of this study suggest that a significant part of the well productivity increases during the period from 2010 to 2015 has been the result of improved well site selection. For the more recent period, that is, from 2015 through 2017, part of the improved well productivity has resulted from substantial increases in the proppant and injection fluids used per stage and per well. |
doi_str_mv | 10.1007/s11053-019-09559-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918320621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918320621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-455edae076c09958ea02630885be3a950335a04f0e50161401434f432cc53b853</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMbucfb7EHqHQglSpDCBGy00dSBuSYqdF_fekBImN6d7wvnfSx9ilgJEAyK6jEEDIQRgOhshwOmIDQRlybbQ4PmQJPFNoTtlZjCvoINQ0YKNpaL7a9-QulDsfYtIUya1br32dzMsqefVVlTyFZrnN23JXtvtzdlK4KvqL3ztkL5P75_EDn82nj-ObGc8xxZYrIr90HrI0B2NIewcyRdCaFh6dIUAkB6oATyBSoUAoVIVCmeeEC004ZFf97iY0n1sfW7tqtqHuXlpphEYJqRRdS_atPDQxBl_YTSg_XNhbAfbgxfZebOfF_nixh2nsodiV6zcf_qb_ob4BpKZijQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918320621</pqid></control><display><type>article</type><title>Growth Drivers of Bakken Oil Well Productivity</title><source>Springer Link</source><creator>Attanasi, E. D. ; Freeman, P. A.</creator><creatorcontrib>Attanasi, E. D. ; Freeman, P. A.</creatorcontrib><description>This paper identifies the drivers of the phenomenal growth in productivity in hydraulically fractured horizontal oil wells producing from the middle member of the Bakken Formation in North Dakota. The data show a strong underlying spatial component and somewhat weaker temporal component. Drivers of the spatial component are favorable reservoir conditions. The temporal component of well productivity growth is driven by increasing the number of fracture treatments and by increasing the volume of proppant and injection fluids used on a per fracture treatment basis. Random Forest, a nonparametric modeling procedure often applied in the context of machine learning, is used to identify the relative importance of geologic and well completion factors that have driven the growth in Bakken well productivity. The findings of this study suggest that a significant part of the well productivity increases during the period from 2010 to 2015 has been the result of improved well site selection. For the more recent period, that is, from 2015 through 2017, part of the improved well productivity has resulted from substantial increases in the proppant and injection fluids used per stage and per well.</description><identifier>ISSN: 1520-7439</identifier><identifier>EISSN: 1573-8981</identifier><identifier>DOI: 10.1007/s11053-019-09559-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chemistry and Earth Sciences ; Computer Science ; Design optimization ; Drilling ; Earth and Environmental Science ; Earth Sciences ; Fossil Fuels (incl. Carbon Capture) ; Fractures ; Geography ; Hydrocarbons ; Injection ; Machine learning ; Mathematical Modeling and Industrial Mathematics ; Mineral Resources ; Oil recovery ; Oil wells ; Original Paper ; Permeability ; Petroleum production ; Physics ; Productivity ; Site selection ; Statistics for Engineering ; Sustainable Development</subject><ispartof>Natural resources research (New York, N.Y.), 2020-06, Vol.29 (3), p.1471-1486</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-455edae076c09958ea02630885be3a950335a04f0e50161401434f432cc53b853</citedby><cites>FETCH-LOGICAL-c363t-455edae076c09958ea02630885be3a950335a04f0e50161401434f432cc53b853</cites><orcidid>0000-0002-0863-7431 ; 0000-0001-6845-7160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Attanasi, E. D.</creatorcontrib><creatorcontrib>Freeman, P. A.</creatorcontrib><title>Growth Drivers of Bakken Oil Well Productivity</title><title>Natural resources research (New York, N.Y.)</title><addtitle>Nat Resour Res</addtitle><description>This paper identifies the drivers of the phenomenal growth in productivity in hydraulically fractured horizontal oil wells producing from the middle member of the Bakken Formation in North Dakota. The data show a strong underlying spatial component and somewhat weaker temporal component. Drivers of the spatial component are favorable reservoir conditions. The temporal component of well productivity growth is driven by increasing the number of fracture treatments and by increasing the volume of proppant and injection fluids used on a per fracture treatment basis. Random Forest, a nonparametric modeling procedure often applied in the context of machine learning, is used to identify the relative importance of geologic and well completion factors that have driven the growth in Bakken well productivity. The findings of this study suggest that a significant part of the well productivity increases during the period from 2010 to 2015 has been the result of improved well site selection. For the more recent period, that is, from 2015 through 2017, part of the improved well productivity has resulted from substantial increases in the proppant and injection fluids used per stage and per well.</description><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Design optimization</subject><subject>Drilling</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fossil Fuels (incl. Carbon Capture)</subject><subject>Fractures</subject><subject>Geography</subject><subject>Hydrocarbons</subject><subject>Injection</subject><subject>Machine learning</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mineral Resources</subject><subject>Oil recovery</subject><subject>Oil wells</subject><subject>Original Paper</subject><subject>Permeability</subject><subject>Petroleum production</subject><subject>Physics</subject><subject>Productivity</subject><subject>Site selection</subject><subject>Statistics for Engineering</subject><subject>Sustainable Development</subject><issn>1520-7439</issn><issn>1573-8981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5giMbucfb7EHqHQglSpDCBGy00dSBuSYqdF_fekBImN6d7wvnfSx9ilgJEAyK6jEEDIQRgOhshwOmIDQRlybbQ4PmQJPFNoTtlZjCvoINQ0YKNpaL7a9-QulDsfYtIUya1br32dzMsqefVVlTyFZrnN23JXtvtzdlK4KvqL3ztkL5P75_EDn82nj-ObGc8xxZYrIr90HrI0B2NIewcyRdCaFh6dIUAkB6oATyBSoUAoVIVCmeeEC004ZFf97iY0n1sfW7tqtqHuXlpphEYJqRRdS_atPDQxBl_YTSg_XNhbAfbgxfZebOfF_nixh2nsodiV6zcf_qb_ob4BpKZijQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Attanasi, E. D.</creator><creator>Freeman, P. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-0863-7431</orcidid><orcidid>https://orcid.org/0000-0001-6845-7160</orcidid></search><sort><creationdate>20200601</creationdate><title>Growth Drivers of Bakken Oil Well Productivity</title><author>Attanasi, E. D. ; Freeman, P. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-455edae076c09958ea02630885be3a950335a04f0e50161401434f432cc53b853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Design optimization</topic><topic>Drilling</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fossil Fuels (incl. Carbon Capture)</topic><topic>Fractures</topic><topic>Geography</topic><topic>Hydrocarbons</topic><topic>Injection</topic><topic>Machine learning</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mineral Resources</topic><topic>Oil recovery</topic><topic>Oil wells</topic><topic>Original Paper</topic><topic>Permeability</topic><topic>Petroleum production</topic><topic>Physics</topic><topic>Productivity</topic><topic>Site selection</topic><topic>Statistics for Engineering</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attanasi, E. D.</creatorcontrib><creatorcontrib>Freeman, P. A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Natural resources research (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attanasi, E. D.</au><au>Freeman, P. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth Drivers of Bakken Oil Well Productivity</atitle><jtitle>Natural resources research (New York, N.Y.)</jtitle><stitle>Nat Resour Res</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>29</volume><issue>3</issue><spage>1471</spage><epage>1486</epage><pages>1471-1486</pages><issn>1520-7439</issn><eissn>1573-8981</eissn><abstract>This paper identifies the drivers of the phenomenal growth in productivity in hydraulically fractured horizontal oil wells producing from the middle member of the Bakken Formation in North Dakota. The data show a strong underlying spatial component and somewhat weaker temporal component. Drivers of the spatial component are favorable reservoir conditions. The temporal component of well productivity growth is driven by increasing the number of fracture treatments and by increasing the volume of proppant and injection fluids used on a per fracture treatment basis. Random Forest, a nonparametric modeling procedure often applied in the context of machine learning, is used to identify the relative importance of geologic and well completion factors that have driven the growth in Bakken well productivity. The findings of this study suggest that a significant part of the well productivity increases during the period from 2010 to 2015 has been the result of improved well site selection. For the more recent period, that is, from 2015 through 2017, part of the improved well productivity has resulted from substantial increases in the proppant and injection fluids used per stage and per well.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11053-019-09559-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0863-7431</orcidid><orcidid>https://orcid.org/0000-0001-6845-7160</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-7439 |
ispartof | Natural resources research (New York, N.Y.), 2020-06, Vol.29 (3), p.1471-1486 |
issn | 1520-7439 1573-8981 |
language | eng |
recordid | cdi_proquest_journals_2918320621 |
source | Springer Link |
subjects | Chemistry and Earth Sciences Computer Science Design optimization Drilling Earth and Environmental Science Earth Sciences Fossil Fuels (incl. Carbon Capture) Fractures Geography Hydrocarbons Injection Machine learning Mathematical Modeling and Industrial Mathematics Mineral Resources Oil recovery Oil wells Original Paper Permeability Petroleum production Physics Productivity Site selection Statistics for Engineering Sustainable Development |
title | Growth Drivers of Bakken Oil Well Productivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A12%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20Drivers%20of%20Bakken%20Oil%20Well%20Productivity&rft.jtitle=Natural%20resources%20research%20(New%20York,%20N.Y.)&rft.au=Attanasi,%20E.%20D.&rft.date=2020-06-01&rft.volume=29&rft.issue=3&rft.spage=1471&rft.epage=1486&rft.pages=1471-1486&rft.issn=1520-7439&rft.eissn=1573-8981&rft_id=info:doi/10.1007/s11053-019-09559-5&rft_dat=%3Cproquest_cross%3E2918320621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-455edae076c09958ea02630885be3a950335a04f0e50161401434f432cc53b853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918320621&rft_id=info:pmid/&rfr_iscdi=true |