Loading…
Structural Properties of Recurrent Neural Networks
In this article we research the impact of the adaptive learning process of recurrent neural networks (RNN) on the structural properties of the derived graphs. A trained fully connected RNN can be converted to a graph by defining edges between pairs od nodes having significant weights. We measured st...
Saved in:
Published in: | Neural processing letters 2009-04, Vol.29 (2), p.75-88 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-6d0b07e45438bec2850ddd67c4f11e326bcf440e91616b82e7073db0da88f19c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-6d0b07e45438bec2850ddd67c4f11e326bcf440e91616b82e7073db0da88f19c3 |
container_end_page | 88 |
container_issue | 2 |
container_start_page | 75 |
container_title | Neural processing letters |
container_volume | 29 |
creator | Dobnikar, Andrej Šter, Branko |
description | In this article we research the impact of the adaptive learning process of recurrent neural networks (RNN) on the structural properties of the derived graphs. A trained fully connected RNN can be converted to a graph by defining edges between pairs od nodes having significant weights. We measured structural properties of the derived graphs, such as characteristic path lengths, clustering coefficients and degree distributions. The results imply that a trained RNN has significantly larger clustering coefficient than a random network with a comparable connectivity. Besides, the degree distributions show existence of nodes with a large degree or hubs, typical for scale-free networks. We also show analytically and experimentally that this type of degree distribution has increased entropy. |
doi_str_mv | 10.1007/s11063-009-9096-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918339238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918339238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-6d0b07e45438bec2850ddd67c4f11e326bcf440e91616b82e7073db0da88f19c3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLcF8RidSbZJ9ijFLyhV_ABvYTebSGvdrZNdxP_e1C168jQD7_feDI-xY4QzBNDnERGU5AAFL6BQXOywEU605FrLl920Sw08VwL32UGMS4DkEjBi4rGj3nU9lavsntq1p27hY9aG7MG7nsg3XTb3P_Lcd58tvcVDthfKVfRH2zlmz1eXT9MbPru7vp1ezLiTueq4qqEC7fNJLk3lnTATqOtaaZcHRC-FqlzIc_AFKlSVEV6DlnUFdWlMwMLJMTsZctfUfvQ-dnbZ9tSkk1YUaKQshDSJwoFy1MZIPtg1Ld5L-rIIdlONHaqxqRq7qcaK5DndJpfRlatAZeMW8dcoUCiUBhMnBi4mqXn19PfB_-HfcrdyWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918339238</pqid></control><display><type>article</type><title>Structural Properties of Recurrent Neural Networks</title><source>Springer Nature</source><creator>Dobnikar, Andrej ; Šter, Branko</creator><creatorcontrib>Dobnikar, Andrej ; Šter, Branko</creatorcontrib><description>In this article we research the impact of the adaptive learning process of recurrent neural networks (RNN) on the structural properties of the derived graphs. A trained fully connected RNN can be converted to a graph by defining edges between pairs od nodes having significant weights. We measured structural properties of the derived graphs, such as characteristic path lengths, clustering coefficients and degree distributions. The results imply that a trained RNN has significantly larger clustering coefficient than a random network with a comparable connectivity. Besides, the degree distributions show existence of nodes with a large degree or hubs, typical for scale-free networks. We also show analytically and experimentally that this type of degree distribution has increased entropy.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-009-9096-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Artificial Intelligence ; Clustering ; Combinatorics ; Combinatorics. Ordered structures ; Complex Systems ; Computational Intelligence ; Computer Science ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Connectionism. Neural networks ; Exact sciences and technology ; Graph theory ; Graphs ; Information retrieval. Graph ; Mathematics ; Nodes ; Recurrent neural networks ; Sciences and techniques of general use ; Software ; Theoretical computing</subject><ispartof>Neural processing letters, 2009-04, Vol.29 (2), p.75-88</ispartof><rights>Springer Science+Business Media, LLC. 2009</rights><rights>2009 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC. 2009.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-6d0b07e45438bec2850ddd67c4f11e326bcf440e91616b82e7073db0da88f19c3</citedby><cites>FETCH-LOGICAL-c346t-6d0b07e45438bec2850ddd67c4f11e326bcf440e91616b82e7073db0da88f19c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21261381$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dobnikar, Andrej</creatorcontrib><creatorcontrib>Šter, Branko</creatorcontrib><title>Structural Properties of Recurrent Neural Networks</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>In this article we research the impact of the adaptive learning process of recurrent neural networks (RNN) on the structural properties of the derived graphs. A trained fully connected RNN can be converted to a graph by defining edges between pairs od nodes having significant weights. We measured structural properties of the derived graphs, such as characteristic path lengths, clustering coefficients and degree distributions. The results imply that a trained RNN has significantly larger clustering coefficient than a random network with a comparable connectivity. Besides, the degree distributions show existence of nodes with a large degree or hubs, typical for scale-free networks. We also show analytically and experimentally that this type of degree distribution has increased entropy.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Mathematics</subject><subject>Nodes</subject><subject>Recurrent neural networks</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt_gLcF8RidSbZJ9ijFLyhV_ABvYTebSGvdrZNdxP_e1C168jQD7_feDI-xY4QzBNDnERGU5AAFL6BQXOywEU605FrLl920Sw08VwL32UGMS4DkEjBi4rGj3nU9lavsntq1p27hY9aG7MG7nsg3XTb3P_Lcd58tvcVDthfKVfRH2zlmz1eXT9MbPru7vp1ezLiTueq4qqEC7fNJLk3lnTATqOtaaZcHRC-FqlzIc_AFKlSVEV6DlnUFdWlMwMLJMTsZctfUfvQ-dnbZ9tSkk1YUaKQshDSJwoFy1MZIPtg1Ld5L-rIIdlONHaqxqRq7qcaK5DndJpfRlatAZeMW8dcoUCiUBhMnBi4mqXn19PfB_-HfcrdyWw</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Dobnikar, Andrej</creator><creator>Šter, Branko</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20090401</creationdate><title>Structural Properties of Recurrent Neural Networks</title><author>Dobnikar, Andrej ; Šter, Branko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-6d0b07e45438bec2850ddd67c4f11e326bcf440e91616b82e7073db0da88f19c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Mathematics</topic><topic>Nodes</topic><topic>Recurrent neural networks</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobnikar, Andrej</creatorcontrib><creatorcontrib>Šter, Branko</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobnikar, Andrej</au><au>Šter, Branko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Properties of Recurrent Neural Networks</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>29</volume><issue>2</issue><spage>75</spage><epage>88</epage><pages>75-88</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>In this article we research the impact of the adaptive learning process of recurrent neural networks (RNN) on the structural properties of the derived graphs. A trained fully connected RNN can be converted to a graph by defining edges between pairs od nodes having significant weights. We measured structural properties of the derived graphs, such as characteristic path lengths, clustering coefficients and degree distributions. The results imply that a trained RNN has significantly larger clustering coefficient than a random network with a comparable connectivity. Besides, the degree distributions show existence of nodes with a large degree or hubs, typical for scale-free networks. We also show analytically and experimentally that this type of degree distribution has increased entropy.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11063-009-9096-2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2009-04, Vol.29 (2), p.75-88 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918339238 |
source | Springer Nature |
subjects | Applied sciences Artificial Intelligence Clustering Combinatorics Combinatorics. Ordered structures Complex Systems Computational Intelligence Computer Science Computer science control theory systems Computer systems and distributed systems. User interface Connectionism. Neural networks Exact sciences and technology Graph theory Graphs Information retrieval. Graph Mathematics Nodes Recurrent neural networks Sciences and techniques of general use Software Theoretical computing |
title | Structural Properties of Recurrent Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Properties%20of%20Recurrent%20Neural%20Networks&rft.jtitle=Neural%20processing%20letters&rft.au=Dobnikar,%20Andrej&rft.date=2009-04-01&rft.volume=29&rft.issue=2&rft.spage=75&rft.epage=88&rft.pages=75-88&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-009-9096-2&rft_dat=%3Cproquest_cross%3E2918339238%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-6d0b07e45438bec2850ddd67c4f11e326bcf440e91616b82e7073db0da88f19c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918339238&rft_id=info:pmid/&rfr_iscdi=true |