Loading…

Single-pixel imaging based on metasurface fuzzy coding

Single-pixel imaging, renowned for its high sensitivity, robustness against interference, and superior resolution, has become increasingly prominent in the field of optical research. Over recent years, a diverse array of light modulation devices and methodologies has been devised to accomplish megah...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2024-01, Vol.63 (3), p.549
Main Authors: Liu, Yusheng, Shi, Yan, Hu, Yingying, Zhou, Yadong, Xu, Rui, Zhan, Chunlian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single-pixel imaging, renowned for its high sensitivity, robustness against interference, and superior resolution, has become increasingly prominent in the field of optical research. Over recent years, a diverse array of light modulation devices and methodologies has been devised to accomplish megahertz modulations rates. This work presents a single-pixel imaging scheme based on the fuzzy coding of metasurfaces. This unique encoding technique manipulates the quality of the mask pattern by adjusting the pixel count within the metasurface units. Notably, we expand the metasurface units to effectively mitigate the position sensitivity during movement or rotations, thus easing the challenge for the detector in collecting the correct light intensity during sub-mask transitions. A detailed analysis is drawn of the reconstruction quality of fuzzy masks. Simultaneously, we provide simulations of single-pixel imaging under the condition where the fuzzy-coded metasurface is moving. This work provides a new, to the best of our knowledge, mask generation mode for high-speed spatial light modulation.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.504410