Loading…
Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption
The stabilization problem for a class of stochastic reaction–diffusion delayed Cohen–Grossberg neural networks (SRDDCGNNs) with event-triggered controllers is addressed in this paper. Neumann boundary conditions, distributed and bounded external disturbances are introduced to solve such a problem. N...
Saved in:
Published in: | Neural processing letters 2023-12, Vol.55 (8), p.11147-11171 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-93bc24f16df74106a069ad7cdb30a7957677e18d2ac0940d09201baf948106bc3 |
container_end_page | 11171 |
container_issue | 8 |
container_start_page | 11147 |
container_title | Neural processing letters |
container_volume | 55 |
creator | Gokulakrishnan, V. Srinivasan, R. |
description | The stabilization problem for a class of stochastic reaction–diffusion delayed Cohen–Grossberg neural networks (SRDDCGNNs) with event-triggered controllers is addressed in this paper. Neumann boundary conditions, distributed and bounded external disturbances are introduced to solve such a problem. New sufficient criteria are derived using the 2-norm event generator and Lyapunov functional to ensure that the proposed controlled systems achieve practically exponential input-to-state stabilization in terms of the linear matrix inequality. Considering these criteria, the impact of an event-triggered controller on the practically exponential input-to-state stability is investigated. The Zeno phenomenon of the event-triggered controller is avoided. Moreover, the obtained results are successfully applied to SRDDCNNs and stochastic reaction–diffusion delayed Hopfield neural networks (SRDDHNNs). Finally, the main results are illustrated with simulation results and the SRDDHNNs are applied to image encryption. |
doi_str_mv | 10.1007/s11063-023-11369-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918349573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918349573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-93bc24f16df74106a069ad7cdb30a7957677e18d2ac0940d09201baf948106bc3</originalsourceid><addsrcrecordid>eNp9kUFO3DAYhaOqlUqhF-jKEmvDbzvEkyUaBhgJAaIgsbMcxxkCwQ62A8ysuAMH4i49CX8YJHbd2NbTe99v-2XZHwY7DEDuRsagEBS4oIyJoqSrb9kG25OCSimuv-NZSKB5wdnP7FeMtwAY47CRvc0erUv0MrSLhQ22JlPvUvBdZwPxjpwHbVJrdNctyey59w7Nre7I3PVDosnTv0knS3Ct2q5d6dRiyDcoeHOjI0bJhR0R3v17eT1om2aIo2Xqb-yoHAUfY2XDgpzaISD41KYnH-4i0a4m8xTJft93eIEPcPJkfq8XlsycCct-1LayH43uov39uW9mV4ezy-kxPTk7mk_3T6jhEhItRWV43rCibmSOX6WhKHUtTV0J0LLck4WUlk1qrg2UOdRQcmCVbsp8gu7KiM1se83tg38YbEzq1g_B4UjFSzYROTIEuvjaZcZ3BduoPrT3OiwVAzUWpdZFKSxKfRSlVhgS61BEs8MWvtD_Sb0DqcSdWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918349573</pqid></control><display><type>article</type><title>Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption</title><source>Springer Nature</source><creator>Gokulakrishnan, V. ; Srinivasan, R.</creator><creatorcontrib>Gokulakrishnan, V. ; Srinivasan, R.</creatorcontrib><description>The stabilization problem for a class of stochastic reaction–diffusion delayed Cohen–Grossberg neural networks (SRDDCGNNs) with event-triggered controllers is addressed in this paper. Neumann boundary conditions, distributed and bounded external disturbances are introduced to solve such a problem. New sufficient criteria are derived using the 2-norm event generator and Lyapunov functional to ensure that the proposed controlled systems achieve practically exponential input-to-state stabilization in terms of the linear matrix inequality. Considering these criteria, the impact of an event-triggered controller on the practically exponential input-to-state stability is investigated. The Zeno phenomenon of the event-triggered controller is avoided. Moreover, the obtained results are successfully applied to SRDDCNNs and stochastic reaction–diffusion delayed Hopfield neural networks (SRDDHNNs). Finally, the main results are illustrated with simulation results and the SRDDHNNs are applied to image encryption.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-023-11369-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Boundary conditions ; Brownian motion ; Complex Systems ; Computational Intelligence ; Computer Science ; Controllers ; Criteria ; Dengue fever ; Design ; Eigenvalues ; Euclidean space ; Event triggered control ; Linear matrix inequalities ; Mathematical analysis ; Neural networks ; Ordinary differential equations ; Partial differential equations ; Stabilization</subject><ispartof>Neural processing letters, 2023-12, Vol.55 (8), p.11147-11171</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-93bc24f16df74106a069ad7cdb30a7957677e18d2ac0940d09201baf948106bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gokulakrishnan, V.</creatorcontrib><creatorcontrib>Srinivasan, R.</creatorcontrib><title>Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>The stabilization problem for a class of stochastic reaction–diffusion delayed Cohen–Grossberg neural networks (SRDDCGNNs) with event-triggered controllers is addressed in this paper. Neumann boundary conditions, distributed and bounded external disturbances are introduced to solve such a problem. New sufficient criteria are derived using the 2-norm event generator and Lyapunov functional to ensure that the proposed controlled systems achieve practically exponential input-to-state stabilization in terms of the linear matrix inequality. Considering these criteria, the impact of an event-triggered controller on the practically exponential input-to-state stability is investigated. The Zeno phenomenon of the event-triggered controller is avoided. Moreover, the obtained results are successfully applied to SRDDCNNs and stochastic reaction–diffusion delayed Hopfield neural networks (SRDDHNNs). Finally, the main results are illustrated with simulation results and the SRDDHNNs are applied to image encryption.</description><subject>Artificial Intelligence</subject><subject>Boundary conditions</subject><subject>Brownian motion</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Controllers</subject><subject>Criteria</subject><subject>Dengue fever</subject><subject>Design</subject><subject>Eigenvalues</subject><subject>Euclidean space</subject><subject>Event triggered control</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Stabilization</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFO3DAYhaOqlUqhF-jKEmvDbzvEkyUaBhgJAaIgsbMcxxkCwQ62A8ysuAMH4i49CX8YJHbd2NbTe99v-2XZHwY7DEDuRsagEBS4oIyJoqSrb9kG25OCSimuv-NZSKB5wdnP7FeMtwAY47CRvc0erUv0MrSLhQ22JlPvUvBdZwPxjpwHbVJrdNctyey59w7Nre7I3PVDosnTv0knS3Ct2q5d6dRiyDcoeHOjI0bJhR0R3v17eT1om2aIo2Xqb-yoHAUfY2XDgpzaISD41KYnH-4i0a4m8xTJft93eIEPcPJkfq8XlsycCct-1LayH43uov39uW9mV4ezy-kxPTk7mk_3T6jhEhItRWV43rCibmSOX6WhKHUtTV0J0LLck4WUlk1qrg2UOdRQcmCVbsp8gu7KiM1se83tg38YbEzq1g_B4UjFSzYROTIEuvjaZcZ3BduoPrT3OiwVAzUWpdZFKSxKfRSlVhgS61BEs8MWvtD_Sb0DqcSdWQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Gokulakrishnan, V.</creator><creator>Srinivasan, R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20231201</creationdate><title>Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption</title><author>Gokulakrishnan, V. ; Srinivasan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-93bc24f16df74106a069ad7cdb30a7957677e18d2ac0940d09201baf948106bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Boundary conditions</topic><topic>Brownian motion</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Controllers</topic><topic>Criteria</topic><topic>Dengue fever</topic><topic>Design</topic><topic>Eigenvalues</topic><topic>Euclidean space</topic><topic>Event triggered control</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gokulakrishnan, V.</creatorcontrib><creatorcontrib>Srinivasan, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gokulakrishnan, V.</au><au>Srinivasan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>55</volume><issue>8</issue><spage>11147</spage><epage>11171</epage><pages>11147-11171</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>The stabilization problem for a class of stochastic reaction–diffusion delayed Cohen–Grossberg neural networks (SRDDCGNNs) with event-triggered controllers is addressed in this paper. Neumann boundary conditions, distributed and bounded external disturbances are introduced to solve such a problem. New sufficient criteria are derived using the 2-norm event generator and Lyapunov functional to ensure that the proposed controlled systems achieve practically exponential input-to-state stabilization in terms of the linear matrix inequality. Considering these criteria, the impact of an event-triggered controller on the practically exponential input-to-state stability is investigated. The Zeno phenomenon of the event-triggered controller is avoided. Moreover, the obtained results are successfully applied to SRDDCNNs and stochastic reaction–diffusion delayed Hopfield neural networks (SRDDHNNs). Finally, the main results are illustrated with simulation results and the SRDDHNNs are applied to image encryption.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-023-11369-z</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2023-12, Vol.55 (8), p.11147-11171 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918349573 |
source | Springer Nature |
subjects | Artificial Intelligence Boundary conditions Brownian motion Complex Systems Computational Intelligence Computer Science Controllers Criteria Dengue fever Design Eigenvalues Euclidean space Event triggered control Linear matrix inequalities Mathematical analysis Neural networks Ordinary differential equations Partial differential equations Stabilization |
title | Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-Triggered%20Controller%20on%20Practically%20Exponential%20Input-to-State%20Stabilization%20of%20Stochastic%20Reaction%E2%80%93Diffusion%20Cohen%E2%80%93Grossberg%20Neural%20Networks%20and%20Its%20Application%20to%20Image%20Encryption&rft.jtitle=Neural%20processing%20letters&rft.au=Gokulakrishnan,%20V.&rft.date=2023-12-01&rft.volume=55&rft.issue=8&rft.spage=11147&rft.epage=11171&rft.pages=11147-11171&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-023-11369-z&rft_dat=%3Cproquest_cross%3E2918349573%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-93bc24f16df74106a069ad7cdb30a7957677e18d2ac0940d09201baf948106bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918349573&rft_id=info:pmid/&rfr_iscdi=true |