Loading…

Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption

The stabilization problem for a class of stochastic reaction–diffusion delayed Cohen–Grossberg neural networks (SRDDCGNNs) with event-triggered controllers is addressed in this paper. Neumann boundary conditions, distributed and bounded external disturbances are introduced to solve such a problem. N...

Full description

Saved in:
Bibliographic Details
Published in:Neural processing letters 2023-12, Vol.55 (8), p.11147-11171
Main Authors: Gokulakrishnan, V., Srinivasan, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-93bc24f16df74106a069ad7cdb30a7957677e18d2ac0940d09201baf948106bc3
container_end_page 11171
container_issue 8
container_start_page 11147
container_title Neural processing letters
container_volume 55
creator Gokulakrishnan, V.
Srinivasan, R.
description The stabilization problem for a class of stochastic reaction–diffusion delayed Cohen–Grossberg neural networks (SRDDCGNNs) with event-triggered controllers is addressed in this paper. Neumann boundary conditions, distributed and bounded external disturbances are introduced to solve such a problem. New sufficient criteria are derived using the 2-norm event generator and Lyapunov functional to ensure that the proposed controlled systems achieve practically exponential input-to-state stabilization in terms of the linear matrix inequality. Considering these criteria, the impact of an event-triggered controller on the practically exponential input-to-state stability is investigated. The Zeno phenomenon of the event-triggered controller is avoided. Moreover, the obtained results are successfully applied to SRDDCNNs and stochastic reaction–diffusion delayed Hopfield neural networks (SRDDHNNs). Finally, the main results are illustrated with simulation results and the SRDDHNNs are applied to image encryption.
doi_str_mv 10.1007/s11063-023-11369-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918349573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918349573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-93bc24f16df74106a069ad7cdb30a7957677e18d2ac0940d09201baf948106bc3</originalsourceid><addsrcrecordid>eNp9kUFO3DAYhaOqlUqhF-jKEmvDbzvEkyUaBhgJAaIgsbMcxxkCwQ62A8ysuAMH4i49CX8YJHbd2NbTe99v-2XZHwY7DEDuRsagEBS4oIyJoqSrb9kG25OCSimuv-NZSKB5wdnP7FeMtwAY47CRvc0erUv0MrSLhQ22JlPvUvBdZwPxjpwHbVJrdNctyey59w7Nre7I3PVDosnTv0knS3Ct2q5d6dRiyDcoeHOjI0bJhR0R3v17eT1om2aIo2Xqb-yoHAUfY2XDgpzaISD41KYnH-4i0a4m8xTJft93eIEPcPJkfq8XlsycCct-1LayH43uov39uW9mV4ezy-kxPTk7mk_3T6jhEhItRWV43rCibmSOX6WhKHUtTV0J0LLck4WUlk1qrg2UOdRQcmCVbsp8gu7KiM1se83tg38YbEzq1g_B4UjFSzYROTIEuvjaZcZ3BduoPrT3OiwVAzUWpdZFKSxKfRSlVhgS61BEs8MWvtD_Sb0DqcSdWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918349573</pqid></control><display><type>article</type><title>Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption</title><source>Springer Nature</source><creator>Gokulakrishnan, V. ; Srinivasan, R.</creator><creatorcontrib>Gokulakrishnan, V. ; Srinivasan, R.</creatorcontrib><description>The stabilization problem for a class of stochastic reaction–diffusion delayed Cohen–Grossberg neural networks (SRDDCGNNs) with event-triggered controllers is addressed in this paper. Neumann boundary conditions, distributed and bounded external disturbances are introduced to solve such a problem. New sufficient criteria are derived using the 2-norm event generator and Lyapunov functional to ensure that the proposed controlled systems achieve practically exponential input-to-state stabilization in terms of the linear matrix inequality. Considering these criteria, the impact of an event-triggered controller on the practically exponential input-to-state stability is investigated. The Zeno phenomenon of the event-triggered controller is avoided. Moreover, the obtained results are successfully applied to SRDDCNNs and stochastic reaction–diffusion delayed Hopfield neural networks (SRDDHNNs). Finally, the main results are illustrated with simulation results and the SRDDHNNs are applied to image encryption.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-023-11369-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Boundary conditions ; Brownian motion ; Complex Systems ; Computational Intelligence ; Computer Science ; Controllers ; Criteria ; Dengue fever ; Design ; Eigenvalues ; Euclidean space ; Event triggered control ; Linear matrix inequalities ; Mathematical analysis ; Neural networks ; Ordinary differential equations ; Partial differential equations ; Stabilization</subject><ispartof>Neural processing letters, 2023-12, Vol.55 (8), p.11147-11171</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-93bc24f16df74106a069ad7cdb30a7957677e18d2ac0940d09201baf948106bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gokulakrishnan, V.</creatorcontrib><creatorcontrib>Srinivasan, R.</creatorcontrib><title>Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>The stabilization problem for a class of stochastic reaction–diffusion delayed Cohen–Grossberg neural networks (SRDDCGNNs) with event-triggered controllers is addressed in this paper. Neumann boundary conditions, distributed and bounded external disturbances are introduced to solve such a problem. New sufficient criteria are derived using the 2-norm event generator and Lyapunov functional to ensure that the proposed controlled systems achieve practically exponential input-to-state stabilization in terms of the linear matrix inequality. Considering these criteria, the impact of an event-triggered controller on the practically exponential input-to-state stability is investigated. The Zeno phenomenon of the event-triggered controller is avoided. Moreover, the obtained results are successfully applied to SRDDCNNs and stochastic reaction–diffusion delayed Hopfield neural networks (SRDDHNNs). Finally, the main results are illustrated with simulation results and the SRDDHNNs are applied to image encryption.</description><subject>Artificial Intelligence</subject><subject>Boundary conditions</subject><subject>Brownian motion</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Controllers</subject><subject>Criteria</subject><subject>Dengue fever</subject><subject>Design</subject><subject>Eigenvalues</subject><subject>Euclidean space</subject><subject>Event triggered control</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Stabilization</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFO3DAYhaOqlUqhF-jKEmvDbzvEkyUaBhgJAaIgsbMcxxkCwQ62A8ysuAMH4i49CX8YJHbd2NbTe99v-2XZHwY7DEDuRsagEBS4oIyJoqSrb9kG25OCSimuv-NZSKB5wdnP7FeMtwAY47CRvc0erUv0MrSLhQ22JlPvUvBdZwPxjpwHbVJrdNctyey59w7Nre7I3PVDosnTv0knS3Ct2q5d6dRiyDcoeHOjI0bJhR0R3v17eT1om2aIo2Xqb-yoHAUfY2XDgpzaISD41KYnH-4i0a4m8xTJft93eIEPcPJkfq8XlsycCct-1LayH43uov39uW9mV4ezy-kxPTk7mk_3T6jhEhItRWV43rCibmSOX6WhKHUtTV0J0LLck4WUlk1qrg2UOdRQcmCVbsp8gu7KiM1se83tg38YbEzq1g_B4UjFSzYROTIEuvjaZcZ3BduoPrT3OiwVAzUWpdZFKSxKfRSlVhgS61BEs8MWvtD_Sb0DqcSdWQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Gokulakrishnan, V.</creator><creator>Srinivasan, R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20231201</creationdate><title>Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption</title><author>Gokulakrishnan, V. ; Srinivasan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-93bc24f16df74106a069ad7cdb30a7957677e18d2ac0940d09201baf948106bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Boundary conditions</topic><topic>Brownian motion</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Controllers</topic><topic>Criteria</topic><topic>Dengue fever</topic><topic>Design</topic><topic>Eigenvalues</topic><topic>Euclidean space</topic><topic>Event triggered control</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gokulakrishnan, V.</creatorcontrib><creatorcontrib>Srinivasan, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gokulakrishnan, V.</au><au>Srinivasan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>55</volume><issue>8</issue><spage>11147</spage><epage>11171</epage><pages>11147-11171</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>The stabilization problem for a class of stochastic reaction–diffusion delayed Cohen–Grossberg neural networks (SRDDCGNNs) with event-triggered controllers is addressed in this paper. Neumann boundary conditions, distributed and bounded external disturbances are introduced to solve such a problem. New sufficient criteria are derived using the 2-norm event generator and Lyapunov functional to ensure that the proposed controlled systems achieve practically exponential input-to-state stabilization in terms of the linear matrix inequality. Considering these criteria, the impact of an event-triggered controller on the practically exponential input-to-state stability is investigated. The Zeno phenomenon of the event-triggered controller is avoided. Moreover, the obtained results are successfully applied to SRDDCNNs and stochastic reaction–diffusion delayed Hopfield neural networks (SRDDHNNs). Finally, the main results are illustrated with simulation results and the SRDDHNNs are applied to image encryption.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-023-11369-z</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2023-12, Vol.55 (8), p.11147-11171
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918349573
source Springer Nature
subjects Artificial Intelligence
Boundary conditions
Brownian motion
Complex Systems
Computational Intelligence
Computer Science
Controllers
Criteria
Dengue fever
Design
Eigenvalues
Euclidean space
Event triggered control
Linear matrix inequalities
Mathematical analysis
Neural networks
Ordinary differential equations
Partial differential equations
Stabilization
title Event-Triggered Controller on Practically Exponential Input-to-State Stabilization of Stochastic Reaction–Diffusion Cohen–Grossberg Neural Networks and Its Application to Image Encryption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-Triggered%20Controller%20on%20Practically%20Exponential%20Input-to-State%20Stabilization%20of%20Stochastic%20Reaction%E2%80%93Diffusion%20Cohen%E2%80%93Grossberg%20Neural%20Networks%20and%20Its%20Application%20to%20Image%20Encryption&rft.jtitle=Neural%20processing%20letters&rft.au=Gokulakrishnan,%20V.&rft.date=2023-12-01&rft.volume=55&rft.issue=8&rft.spage=11147&rft.epage=11171&rft.pages=11147-11171&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-023-11369-z&rft_dat=%3Cproquest_cross%3E2918349573%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-93bc24f16df74106a069ad7cdb30a7957677e18d2ac0940d09201baf948106bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918349573&rft_id=info:pmid/&rfr_iscdi=true