Loading…
Event-triggered multi-agent credit allocation pursuit-evasion algorithm
The reinforcement learning is used to study the problem of multi-agent pursuit-evasion games in this article. The main problem of current reinforcement learning applied to multi-agents is the low learning efficiency of agents. To solve this problem, a credit allocation mechanism is adopted in the Mu...
Saved in:
Published in: | Neural processing letters 2023-02, Vol.55 (1), p.789-802 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-b5efe794100c030651d303146b6ebf532206b5f3940b7b57f736c6bebb1ca25d3 |
container_end_page | 802 |
container_issue | 1 |
container_start_page | 789 |
container_title | Neural processing letters |
container_volume | 55 |
creator | Zhang, Bo-Kun Hu, Bin Zhang, Ding-Xue Guan, Zhi-Hong Cheng, Xin-Ming |
description | The reinforcement learning is used to study the problem of multi-agent pursuit-evasion games in this article. The main problem of current reinforcement learning applied to multi-agents is the low learning efficiency of agents. To solve this problem, a credit allocation mechanism is adopted in the Multi-agent Deep Deterministic Policy Gradient frame (hereinafter referred to as the MADDPG), the core idea of which is to enable individuals who contribute more to the group to occupy a higher degree of dominance in subsequent training iterations. An event-triggered mechanism is utilized for the simplification of calculation. An observer is set for the feedback value, and the credit allocation algorithm is activated only when the observer believes that the agent group is in a local optimal training dilemma. The final simulation and experiment show that, In most cases, the event-triggered multiagent credit allocation algorithm (hereinafter referred to as the EDMCA algorithm) obtained better results and discussed the parameter settings of the observer. |
doi_str_mv | 10.1007/s11063-022-10909-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918349580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918349580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-b5efe794100c030651d303146b6ebf532206b5f3940b7b57f736c6bebb1ca25d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWP98AU8LnqOTzCbpHqXUKhS8KHgLyTa7pmx3a5It-O1NXcGbp5l5vDcPfoTcMLhjAOo-MgYSKXBOGVRQUTwhMyYUUqXw_TTvqICWkrNzchHjFiDHOMzIanlwfaIp-LZ1wW2K3dglT02b1aLOgk-F6bqhNskPfbEfQxx9ou5g4vE2XTsEnz52V-SsMV1017_zkrw9Ll8XT3T9snpePKxpzRUkaoVrnKrK3F4DghRsg4CslFY62wjkHKQVDVYlWGWFahTKWlpnLasNFxu8JLfT330YPkcXk94OY-hzpeYVm2NZiTlkF59cdRhiDK7R--B3JnxpBvoITE_AdAamf4BpzCGcQjGb-0zj7_U_qW8ilm4v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918349580</pqid></control><display><type>article</type><title>Event-triggered multi-agent credit allocation pursuit-evasion algorithm</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Zhang, Bo-Kun ; Hu, Bin ; Zhang, Ding-Xue ; Guan, Zhi-Hong ; Cheng, Xin-Ming</creator><creatorcontrib>Zhang, Bo-Kun ; Hu, Bin ; Zhang, Ding-Xue ; Guan, Zhi-Hong ; Cheng, Xin-Ming</creatorcontrib><description>The reinforcement learning is used to study the problem of multi-agent pursuit-evasion games in this article. The main problem of current reinforcement learning applied to multi-agents is the low learning efficiency of agents. To solve this problem, a credit allocation mechanism is adopted in the Multi-agent Deep Deterministic Policy Gradient frame (hereinafter referred to as the MADDPG), the core idea of which is to enable individuals who contribute more to the group to occupy a higher degree of dominance in subsequent training iterations. An event-triggered mechanism is utilized for the simplification of calculation. An observer is set for the feedback value, and the credit allocation algorithm is activated only when the observer believes that the agent group is in a local optimal training dilemma. The final simulation and experiment show that, In most cases, the event-triggered multiagent credit allocation algorithm (hereinafter referred to as the EDMCA algorithm) obtained better results and discussed the parameter settings of the observer.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-022-10909-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Collaboration ; Communication ; Complex Systems ; Computational Intelligence ; Computer Science ; Cooperation ; Machine learning ; Methods ; Multiagent systems ; Pursuit-evasion games</subject><ispartof>Neural processing letters, 2023-02, Vol.55 (1), p.789-802</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-b5efe794100c030651d303146b6ebf532206b5f3940b7b57f736c6bebb1ca25d3</cites><orcidid>0000-0001-7997-0314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Bo-Kun</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Zhang, Ding-Xue</creatorcontrib><creatorcontrib>Guan, Zhi-Hong</creatorcontrib><creatorcontrib>Cheng, Xin-Ming</creatorcontrib><title>Event-triggered multi-agent credit allocation pursuit-evasion algorithm</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>The reinforcement learning is used to study the problem of multi-agent pursuit-evasion games in this article. The main problem of current reinforcement learning applied to multi-agents is the low learning efficiency of agents. To solve this problem, a credit allocation mechanism is adopted in the Multi-agent Deep Deterministic Policy Gradient frame (hereinafter referred to as the MADDPG), the core idea of which is to enable individuals who contribute more to the group to occupy a higher degree of dominance in subsequent training iterations. An event-triggered mechanism is utilized for the simplification of calculation. An observer is set for the feedback value, and the credit allocation algorithm is activated only when the observer believes that the agent group is in a local optimal training dilemma. The final simulation and experiment show that, In most cases, the event-triggered multiagent credit allocation algorithm (hereinafter referred to as the EDMCA algorithm) obtained better results and discussed the parameter settings of the observer.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Collaboration</subject><subject>Communication</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Cooperation</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Multiagent systems</subject><subject>Pursuit-evasion games</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWP98AU8LnqOTzCbpHqXUKhS8KHgLyTa7pmx3a5It-O1NXcGbp5l5vDcPfoTcMLhjAOo-MgYSKXBOGVRQUTwhMyYUUqXw_TTvqICWkrNzchHjFiDHOMzIanlwfaIp-LZ1wW2K3dglT02b1aLOgk-F6bqhNskPfbEfQxx9ou5g4vE2XTsEnz52V-SsMV1017_zkrw9Ll8XT3T9snpePKxpzRUkaoVrnKrK3F4DghRsg4CslFY62wjkHKQVDVYlWGWFahTKWlpnLasNFxu8JLfT330YPkcXk94OY-hzpeYVm2NZiTlkF59cdRhiDK7R--B3JnxpBvoITE_AdAamf4BpzCGcQjGb-0zj7_U_qW8ilm4v</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Bo-Kun</creator><creator>Hu, Bin</creator><creator>Zhang, Ding-Xue</creator><creator>Guan, Zhi-Hong</creator><creator>Cheng, Xin-Ming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0001-7997-0314</orcidid></search><sort><creationdate>20230201</creationdate><title>Event-triggered multi-agent credit allocation pursuit-evasion algorithm</title><author>Zhang, Bo-Kun ; Hu, Bin ; Zhang, Ding-Xue ; Guan, Zhi-Hong ; Cheng, Xin-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-b5efe794100c030651d303146b6ebf532206b5f3940b7b57f736c6bebb1ca25d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Collaboration</topic><topic>Communication</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Cooperation</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Multiagent systems</topic><topic>Pursuit-evasion games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bo-Kun</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Zhang, Ding-Xue</creatorcontrib><creatorcontrib>Guan, Zhi-Hong</creatorcontrib><creatorcontrib>Cheng, Xin-Ming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bo-Kun</au><au>Hu, Bin</au><au>Zhang, Ding-Xue</au><au>Guan, Zhi-Hong</au><au>Cheng, Xin-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-triggered multi-agent credit allocation pursuit-evasion algorithm</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>55</volume><issue>1</issue><spage>789</spage><epage>802</epage><pages>789-802</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>The reinforcement learning is used to study the problem of multi-agent pursuit-evasion games in this article. The main problem of current reinforcement learning applied to multi-agents is the low learning efficiency of agents. To solve this problem, a credit allocation mechanism is adopted in the Multi-agent Deep Deterministic Policy Gradient frame (hereinafter referred to as the MADDPG), the core idea of which is to enable individuals who contribute more to the group to occupy a higher degree of dominance in subsequent training iterations. An event-triggered mechanism is utilized for the simplification of calculation. An observer is set for the feedback value, and the credit allocation algorithm is activated only when the observer believes that the agent group is in a local optimal training dilemma. The final simulation and experiment show that, In most cases, the event-triggered multiagent credit allocation algorithm (hereinafter referred to as the EDMCA algorithm) obtained better results and discussed the parameter settings of the observer.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-022-10909-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7997-0314</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2023-02, Vol.55 (1), p.789-802 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918349580 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Algorithms Artificial Intelligence Collaboration Communication Complex Systems Computational Intelligence Computer Science Cooperation Machine learning Methods Multiagent systems Pursuit-evasion games |
title | Event-triggered multi-agent credit allocation pursuit-evasion algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-triggered%20multi-agent%20credit%20allocation%20pursuit-evasion%20algorithm&rft.jtitle=Neural%20processing%20letters&rft.au=Zhang,%20Bo-Kun&rft.date=2023-02-01&rft.volume=55&rft.issue=1&rft.spage=789&rft.epage=802&rft.pages=789-802&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-022-10909-3&rft_dat=%3Cproquest_cross%3E2918349580%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-b5efe794100c030651d303146b6ebf532206b5f3940b7b57f736c6bebb1ca25d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918349580&rft_id=info:pmid/&rfr_iscdi=true |