Loading…

Event-triggered multi-agent credit allocation pursuit-evasion algorithm

The reinforcement learning is used to study the problem of multi-agent pursuit-evasion games in this article. The main problem of current reinforcement learning applied to multi-agents is the low learning efficiency of agents. To solve this problem, a credit allocation mechanism is adopted in the Mu...

Full description

Saved in:
Bibliographic Details
Published in:Neural processing letters 2023-02, Vol.55 (1), p.789-802
Main Authors: Zhang, Bo-Kun, Hu, Bin, Zhang, Ding-Xue, Guan, Zhi-Hong, Cheng, Xin-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-b5efe794100c030651d303146b6ebf532206b5f3940b7b57f736c6bebb1ca25d3
container_end_page 802
container_issue 1
container_start_page 789
container_title Neural processing letters
container_volume 55
creator Zhang, Bo-Kun
Hu, Bin
Zhang, Ding-Xue
Guan, Zhi-Hong
Cheng, Xin-Ming
description The reinforcement learning is used to study the problem of multi-agent pursuit-evasion games in this article. The main problem of current reinforcement learning applied to multi-agents is the low learning efficiency of agents. To solve this problem, a credit allocation mechanism is adopted in the Multi-agent Deep Deterministic Policy Gradient frame (hereinafter referred to as the MADDPG), the core idea of which is to enable individuals who contribute more to the group to occupy a higher degree of dominance in subsequent training iterations. An event-triggered mechanism is utilized for the simplification of calculation. An observer is set for the feedback value, and the credit allocation algorithm is activated only when the observer believes that the agent group is in a local optimal training dilemma. The final simulation and experiment show that, In most cases, the event-triggered multiagent credit allocation algorithm (hereinafter referred to as the EDMCA algorithm) obtained better results and discussed the parameter settings of the observer.
doi_str_mv 10.1007/s11063-022-10909-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918349580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918349580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-b5efe794100c030651d303146b6ebf532206b5f3940b7b57f736c6bebb1ca25d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWP98AU8LnqOTzCbpHqXUKhS8KHgLyTa7pmx3a5It-O1NXcGbp5l5vDcPfoTcMLhjAOo-MgYSKXBOGVRQUTwhMyYUUqXw_TTvqICWkrNzchHjFiDHOMzIanlwfaIp-LZ1wW2K3dglT02b1aLOgk-F6bqhNskPfbEfQxx9ou5g4vE2XTsEnz52V-SsMV1017_zkrw9Ll8XT3T9snpePKxpzRUkaoVrnKrK3F4DghRsg4CslFY62wjkHKQVDVYlWGWFahTKWlpnLasNFxu8JLfT330YPkcXk94OY-hzpeYVm2NZiTlkF59cdRhiDK7R--B3JnxpBvoITE_AdAamf4BpzCGcQjGb-0zj7_U_qW8ilm4v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918349580</pqid></control><display><type>article</type><title>Event-triggered multi-agent credit allocation pursuit-evasion algorithm</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Zhang, Bo-Kun ; Hu, Bin ; Zhang, Ding-Xue ; Guan, Zhi-Hong ; Cheng, Xin-Ming</creator><creatorcontrib>Zhang, Bo-Kun ; Hu, Bin ; Zhang, Ding-Xue ; Guan, Zhi-Hong ; Cheng, Xin-Ming</creatorcontrib><description>The reinforcement learning is used to study the problem of multi-agent pursuit-evasion games in this article. The main problem of current reinforcement learning applied to multi-agents is the low learning efficiency of agents. To solve this problem, a credit allocation mechanism is adopted in the Multi-agent Deep Deterministic Policy Gradient frame (hereinafter referred to as the MADDPG), the core idea of which is to enable individuals who contribute more to the group to occupy a higher degree of dominance in subsequent training iterations. An event-triggered mechanism is utilized for the simplification of calculation. An observer is set for the feedback value, and the credit allocation algorithm is activated only when the observer believes that the agent group is in a local optimal training dilemma. The final simulation and experiment show that, In most cases, the event-triggered multiagent credit allocation algorithm (hereinafter referred to as the EDMCA algorithm) obtained better results and discussed the parameter settings of the observer.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-022-10909-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Collaboration ; Communication ; Complex Systems ; Computational Intelligence ; Computer Science ; Cooperation ; Machine learning ; Methods ; Multiagent systems ; Pursuit-evasion games</subject><ispartof>Neural processing letters, 2023-02, Vol.55 (1), p.789-802</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-b5efe794100c030651d303146b6ebf532206b5f3940b7b57f736c6bebb1ca25d3</cites><orcidid>0000-0001-7997-0314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Bo-Kun</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Zhang, Ding-Xue</creatorcontrib><creatorcontrib>Guan, Zhi-Hong</creatorcontrib><creatorcontrib>Cheng, Xin-Ming</creatorcontrib><title>Event-triggered multi-agent credit allocation pursuit-evasion algorithm</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>The reinforcement learning is used to study the problem of multi-agent pursuit-evasion games in this article. The main problem of current reinforcement learning applied to multi-agents is the low learning efficiency of agents. To solve this problem, a credit allocation mechanism is adopted in the Multi-agent Deep Deterministic Policy Gradient frame (hereinafter referred to as the MADDPG), the core idea of which is to enable individuals who contribute more to the group to occupy a higher degree of dominance in subsequent training iterations. An event-triggered mechanism is utilized for the simplification of calculation. An observer is set for the feedback value, and the credit allocation algorithm is activated only when the observer believes that the agent group is in a local optimal training dilemma. The final simulation and experiment show that, In most cases, the event-triggered multiagent credit allocation algorithm (hereinafter referred to as the EDMCA algorithm) obtained better results and discussed the parameter settings of the observer.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Collaboration</subject><subject>Communication</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Cooperation</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Multiagent systems</subject><subject>Pursuit-evasion games</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWP98AU8LnqOTzCbpHqXUKhS8KHgLyTa7pmx3a5It-O1NXcGbp5l5vDcPfoTcMLhjAOo-MgYSKXBOGVRQUTwhMyYUUqXw_TTvqICWkrNzchHjFiDHOMzIanlwfaIp-LZ1wW2K3dglT02b1aLOgk-F6bqhNskPfbEfQxx9ou5g4vE2XTsEnz52V-SsMV1017_zkrw9Ll8XT3T9snpePKxpzRUkaoVrnKrK3F4DghRsg4CslFY62wjkHKQVDVYlWGWFahTKWlpnLasNFxu8JLfT330YPkcXk94OY-hzpeYVm2NZiTlkF59cdRhiDK7R--B3JnxpBvoITE_AdAamf4BpzCGcQjGb-0zj7_U_qW8ilm4v</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Bo-Kun</creator><creator>Hu, Bin</creator><creator>Zhang, Ding-Xue</creator><creator>Guan, Zhi-Hong</creator><creator>Cheng, Xin-Ming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0001-7997-0314</orcidid></search><sort><creationdate>20230201</creationdate><title>Event-triggered multi-agent credit allocation pursuit-evasion algorithm</title><author>Zhang, Bo-Kun ; Hu, Bin ; Zhang, Ding-Xue ; Guan, Zhi-Hong ; Cheng, Xin-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-b5efe794100c030651d303146b6ebf532206b5f3940b7b57f736c6bebb1ca25d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Collaboration</topic><topic>Communication</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Cooperation</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Multiagent systems</topic><topic>Pursuit-evasion games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bo-Kun</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Zhang, Ding-Xue</creatorcontrib><creatorcontrib>Guan, Zhi-Hong</creatorcontrib><creatorcontrib>Cheng, Xin-Ming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bo-Kun</au><au>Hu, Bin</au><au>Zhang, Ding-Xue</au><au>Guan, Zhi-Hong</au><au>Cheng, Xin-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-triggered multi-agent credit allocation pursuit-evasion algorithm</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>55</volume><issue>1</issue><spage>789</spage><epage>802</epage><pages>789-802</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>The reinforcement learning is used to study the problem of multi-agent pursuit-evasion games in this article. The main problem of current reinforcement learning applied to multi-agents is the low learning efficiency of agents. To solve this problem, a credit allocation mechanism is adopted in the Multi-agent Deep Deterministic Policy Gradient frame (hereinafter referred to as the MADDPG), the core idea of which is to enable individuals who contribute more to the group to occupy a higher degree of dominance in subsequent training iterations. An event-triggered mechanism is utilized for the simplification of calculation. An observer is set for the feedback value, and the credit allocation algorithm is activated only when the observer believes that the agent group is in a local optimal training dilemma. The final simulation and experiment show that, In most cases, the event-triggered multiagent credit allocation algorithm (hereinafter referred to as the EDMCA algorithm) obtained better results and discussed the parameter settings of the observer.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-022-10909-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7997-0314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2023-02, Vol.55 (1), p.789-802
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918349580
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algorithms
Artificial Intelligence
Collaboration
Communication
Complex Systems
Computational Intelligence
Computer Science
Cooperation
Machine learning
Methods
Multiagent systems
Pursuit-evasion games
title Event-triggered multi-agent credit allocation pursuit-evasion algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-triggered%20multi-agent%20credit%20allocation%20pursuit-evasion%20algorithm&rft.jtitle=Neural%20processing%20letters&rft.au=Zhang,%20Bo-Kun&rft.date=2023-02-01&rft.volume=55&rft.issue=1&rft.spage=789&rft.epage=802&rft.pages=789-802&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-022-10909-3&rft_dat=%3Cproquest_cross%3E2918349580%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-b5efe794100c030651d303146b6ebf532206b5f3940b7b57f736c6bebb1ca25d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918349580&rft_id=info:pmid/&rfr_iscdi=true