Loading…
Hopf Bifurcation of General Fractional Delayed TdBAM Neural Networks
In this paper, a fractional model of a special structure of bidirectional associative memory (BAM) neural networks called tri-diagonal BAM neural networks (TdBAMNNs) is considered. The Hopf bifurcation analysis is made for the proposed fractional system in the presence of leakage and communication d...
Saved in:
Published in: | Neural processing letters 2023-12, Vol.55 (6), p.8095-8113 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-dab66a7377ca712a55dcee16c207a89ca34e3e1378c9c80e714d0a63ac874d7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-dab66a7377ca712a55dcee16c207a89ca34e3e1378c9c80e714d0a63ac874d7d3 |
container_end_page | 8113 |
container_issue | 6 |
container_start_page | 8095 |
container_title | Neural processing letters |
container_volume | 55 |
creator | Rakshana, M. Balasubramaniam, P. |
description | In this paper, a fractional model of a special structure of bidirectional associative memory (BAM) neural networks called tri-diagonal BAM neural networks (TdBAMNNs) is considered. The Hopf bifurcation analysis is made for the proposed fractional system in the presence of leakage and communication delays. The feasibility of the obtained theoretical results is verified by numerical simulations. |
doi_str_mv | 10.1007/s11063-023-11302-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918354265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918354265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dab66a7377ca712a55dcee16c207a89ca34e3e1378c9c80e714d0a63ac874d7d3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4mzwK3Fy7IO2SKVcisTNWuwNail1sROh_nscgsSN0452Z1ajj5Brzm45Y_oucs4KSZmQlHPJBFUnZMBzLanW8uU0aakZVYXg5-Qixi1jKSbYgEwX_lBn403dBgvNxu8zX2dz3GOAXTYLYLtdklPcwRFdtnbj0WO2wra7r7D58uE9XpKzGnYRr37nkDzP7teTBV0-zR8moyW1klcNdfBaFKCl1hY0F5DnziLywgqmoawsSIUSU9PSVrZkqLlyDAoJttTKaSeH5Kb_ewj-s8XYmK1vQ6oXjah4KXMlijy5RO-ywccYsDaHsPmAcDScmY6W6WmZRMv80DIqhWQfism8f8Pw9_qf1DcJiGu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918354265</pqid></control><display><type>article</type><title>Hopf Bifurcation of General Fractional Delayed TdBAM Neural Networks</title><source>Springer Nature</source><creator>Rakshana, M. ; Balasubramaniam, P.</creator><creatorcontrib>Rakshana, M. ; Balasubramaniam, P.</creatorcontrib><description>In this paper, a fractional model of a special structure of bidirectional associative memory (BAM) neural networks called tri-diagonal BAM neural networks (TdBAMNNs) is considered. The Hopf bifurcation analysis is made for the proposed fractional system in the presence of leakage and communication delays. The feasibility of the obtained theoretical results is verified by numerical simulations.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-023-11302-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Associative memory ; Communication ; Complex Systems ; Computational Intelligence ; Computer Science ; Eigenvalues ; Equilibrium ; Hopf bifurcation ; Investigations ; Mathematical models ; Neural networks ; Recurrent neural networks</subject><ispartof>Neural processing letters, 2023-12, Vol.55 (6), p.8095-8113</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dab66a7377ca712a55dcee16c207a89ca34e3e1378c9c80e714d0a63ac874d7d3</citedby><cites>FETCH-LOGICAL-c319t-dab66a7377ca712a55dcee16c207a89ca34e3e1378c9c80e714d0a63ac874d7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rakshana, M.</creatorcontrib><creatorcontrib>Balasubramaniam, P.</creatorcontrib><title>Hopf Bifurcation of General Fractional Delayed TdBAM Neural Networks</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>In this paper, a fractional model of a special structure of bidirectional associative memory (BAM) neural networks called tri-diagonal BAM neural networks (TdBAMNNs) is considered. The Hopf bifurcation analysis is made for the proposed fractional system in the presence of leakage and communication delays. The feasibility of the obtained theoretical results is verified by numerical simulations.</description><subject>Artificial Intelligence</subject><subject>Associative memory</subject><subject>Communication</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Eigenvalues</subject><subject>Equilibrium</subject><subject>Hopf bifurcation</subject><subject>Investigations</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4mzwK3Fy7IO2SKVcisTNWuwNail1sROh_nscgsSN0452Z1ajj5Brzm45Y_oucs4KSZmQlHPJBFUnZMBzLanW8uU0aakZVYXg5-Qixi1jKSbYgEwX_lBn403dBgvNxu8zX2dz3GOAXTYLYLtdklPcwRFdtnbj0WO2wra7r7D58uE9XpKzGnYRr37nkDzP7teTBV0-zR8moyW1klcNdfBaFKCl1hY0F5DnziLywgqmoawsSIUSU9PSVrZkqLlyDAoJttTKaSeH5Kb_ewj-s8XYmK1vQ6oXjah4KXMlijy5RO-ywccYsDaHsPmAcDScmY6W6WmZRMv80DIqhWQfism8f8Pw9_qf1DcJiGu8</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Rakshana, M.</creator><creator>Balasubramaniam, P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20231201</creationdate><title>Hopf Bifurcation of General Fractional Delayed TdBAM Neural Networks</title><author>Rakshana, M. ; Balasubramaniam, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dab66a7377ca712a55dcee16c207a89ca34e3e1378c9c80e714d0a63ac874d7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Associative memory</topic><topic>Communication</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Eigenvalues</topic><topic>Equilibrium</topic><topic>Hopf bifurcation</topic><topic>Investigations</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakshana, M.</creatorcontrib><creatorcontrib>Balasubramaniam, P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakshana, M.</au><au>Balasubramaniam, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hopf Bifurcation of General Fractional Delayed TdBAM Neural Networks</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>55</volume><issue>6</issue><spage>8095</spage><epage>8113</epage><pages>8095-8113</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>In this paper, a fractional model of a special structure of bidirectional associative memory (BAM) neural networks called tri-diagonal BAM neural networks (TdBAMNNs) is considered. The Hopf bifurcation analysis is made for the proposed fractional system in the presence of leakage and communication delays. The feasibility of the obtained theoretical results is verified by numerical simulations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-023-11302-4</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2023-12, Vol.55 (6), p.8095-8113 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918354265 |
source | Springer Nature |
subjects | Artificial Intelligence Associative memory Communication Complex Systems Computational Intelligence Computer Science Eigenvalues Equilibrium Hopf bifurcation Investigations Mathematical models Neural networks Recurrent neural networks |
title | Hopf Bifurcation of General Fractional Delayed TdBAM Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hopf%20Bifurcation%20of%20General%20Fractional%20Delayed%20TdBAM%20Neural%20Networks&rft.jtitle=Neural%20processing%20letters&rft.au=Rakshana,%20M.&rft.date=2023-12-01&rft.volume=55&rft.issue=6&rft.spage=8095&rft.epage=8113&rft.pages=8095-8113&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-023-11302-4&rft_dat=%3Cproquest_cross%3E2918354265%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-dab66a7377ca712a55dcee16c207a89ca34e3e1378c9c80e714d0a63ac874d7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918354265&rft_id=info:pmid/&rfr_iscdi=true |