Loading…

Object‐aware deep feature extraction for feature matching

Feature extraction is a fundamental step in the feature matching task. A lot of studies are devoted to feature extraction. Recent researches propose to extract features by pre‐trained neural networks, and the output is used for feature matching. However, the quality and the quantity of the features...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation 2024-02, Vol.36 (5)
Main Authors: Li, Zuoyong, Wang, Weice, Lai, Taotao, Xu, Haiping, Keikhosrokiani, Pantea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c250t-f5a7e9f100fd270e9ee6e11be82b670fd4a4b4b4f4325210b2ff18e7fc44348b3
container_end_page
container_issue 5
container_start_page
container_title Concurrency and computation
container_volume 36
creator Li, Zuoyong
Wang, Weice
Lai, Taotao
Xu, Haiping
Keikhosrokiani, Pantea
description Feature extraction is a fundamental step in the feature matching task. A lot of studies are devoted to feature extraction. Recent researches propose to extract features by pre‐trained neural networks, and the output is used for feature matching. However, the quality and the quantity of the features extracted by these methods are difficult to meet the requirements for the practical applications. In this article, we propose a two‐stage object‐aware‐based feature matching method. Specifically, the proposed object‐aware block predicts a weighted feature map through a mask predictor and a prefeature extractor, so that the subsequent feature extractor pays more attention to the key regions by using the weighted feature map. In addition, we introduce a state‐of‐the‐art model estimation algorithm to align image pair as the input of the object‐aware block. Furthermore, our method also employs an advanced outlier removal algorithm to further improve matching quality. Experimental results show that our object‐aware‐based feature matching method improves the performance of feature matching compared with several state‐of‐the‐art methods.
doi_str_mv 10.1002/cpe.7932
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918409748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918409748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-f5a7e9f100fd270e9ee6e11be82b670fd4a4b4b4f4325210b2ff18e7fc44348b3</originalsourceid><addsrcrecordid>eNo9kM9KAzEQxoMoWKvgIyx48bJ1Jsn-w5MU_0GhFz2HJJ3oLra7JlnUm4_gM_okplTKHGbm42O-4cfYOcIMAfiVHWhWNYIfsAkWgudQCnm4n3l5zE5C6AAQQeCEXS9NRzb-fv_oD-0pWxENmSMdx7TQZ_TaxrbfZK73e3mto31tNy-n7Mjpt0Bn_33Knu9un-YP-WJ5_zi_WeSWFxBzV-iKGpe-cyteATVEJSEaqrkpqyRKLU0qJwUvOILhzmFNlbNSClkbMWUXu7uD799HClF1_eg3KVLxBmsJTSXr5LrcuazvQ_Dk1ODbtfZfCkFt0aiERm3RiD9ijlcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918409748</pqid></control><display><type>article</type><title>Object‐aware deep feature extraction for feature matching</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Li, Zuoyong ; Wang, Weice ; Lai, Taotao ; Xu, Haiping ; Keikhosrokiani, Pantea</creator><creatorcontrib>Li, Zuoyong ; Wang, Weice ; Lai, Taotao ; Xu, Haiping ; Keikhosrokiani, Pantea</creatorcontrib><description>Feature extraction is a fundamental step in the feature matching task. A lot of studies are devoted to feature extraction. Recent researches propose to extract features by pre‐trained neural networks, and the output is used for feature matching. However, the quality and the quantity of the features extracted by these methods are difficult to meet the requirements for the practical applications. In this article, we propose a two‐stage object‐aware‐based feature matching method. Specifically, the proposed object‐aware block predicts a weighted feature map through a mask predictor and a prefeature extractor, so that the subsequent feature extractor pays more attention to the key regions by using the weighted feature map. In addition, we introduce a state‐of‐the‐art model estimation algorithm to align image pair as the input of the object‐aware block. Furthermore, our method also employs an advanced outlier removal algorithm to further improve matching quality. Experimental results show that our object‐aware‐based feature matching method improves the performance of feature matching compared with several state‐of‐the‐art methods.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.7932</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Feature extraction ; Feature maps ; Matching ; Neural networks</subject><ispartof>Concurrency and computation, 2024-02, Vol.36 (5)</ispartof><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-f5a7e9f100fd270e9ee6e11be82b670fd4a4b4b4f4325210b2ff18e7fc44348b3</cites><orcidid>0000-0003-0952-9915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Zuoyong</creatorcontrib><creatorcontrib>Wang, Weice</creatorcontrib><creatorcontrib>Lai, Taotao</creatorcontrib><creatorcontrib>Xu, Haiping</creatorcontrib><creatorcontrib>Keikhosrokiani, Pantea</creatorcontrib><title>Object‐aware deep feature extraction for feature matching</title><title>Concurrency and computation</title><description>Feature extraction is a fundamental step in the feature matching task. A lot of studies are devoted to feature extraction. Recent researches propose to extract features by pre‐trained neural networks, and the output is used for feature matching. However, the quality and the quantity of the features extracted by these methods are difficult to meet the requirements for the practical applications. In this article, we propose a two‐stage object‐aware‐based feature matching method. Specifically, the proposed object‐aware block predicts a weighted feature map through a mask predictor and a prefeature extractor, so that the subsequent feature extractor pays more attention to the key regions by using the weighted feature map. In addition, we introduce a state‐of‐the‐art model estimation algorithm to align image pair as the input of the object‐aware block. Furthermore, our method also employs an advanced outlier removal algorithm to further improve matching quality. Experimental results show that our object‐aware‐based feature matching method improves the performance of feature matching compared with several state‐of‐the‐art methods.</description><subject>Algorithms</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Matching</subject><subject>Neural networks</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9KAzEQxoMoWKvgIyx48bJ1Jsn-w5MU_0GhFz2HJJ3oLra7JlnUm4_gM_okplTKHGbm42O-4cfYOcIMAfiVHWhWNYIfsAkWgudQCnm4n3l5zE5C6AAQQeCEXS9NRzb-fv_oD-0pWxENmSMdx7TQZ_TaxrbfZK73e3mto31tNy-n7Mjpt0Bn_33Knu9un-YP-WJ5_zi_WeSWFxBzV-iKGpe-cyteATVEJSEaqrkpqyRKLU0qJwUvOILhzmFNlbNSClkbMWUXu7uD799HClF1_eg3KVLxBmsJTSXr5LrcuazvQ_Dk1ODbtfZfCkFt0aiERm3RiD9ijlcA</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>Li, Zuoyong</creator><creator>Wang, Weice</creator><creator>Lai, Taotao</creator><creator>Xu, Haiping</creator><creator>Keikhosrokiani, Pantea</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0952-9915</orcidid></search><sort><creationdate>20240229</creationdate><title>Object‐aware deep feature extraction for feature matching</title><author>Li, Zuoyong ; Wang, Weice ; Lai, Taotao ; Xu, Haiping ; Keikhosrokiani, Pantea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-f5a7e9f100fd270e9ee6e11be82b670fd4a4b4b4f4325210b2ff18e7fc44348b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Matching</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zuoyong</creatorcontrib><creatorcontrib>Wang, Weice</creatorcontrib><creatorcontrib>Lai, Taotao</creatorcontrib><creatorcontrib>Xu, Haiping</creatorcontrib><creatorcontrib>Keikhosrokiani, Pantea</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zuoyong</au><au>Wang, Weice</au><au>Lai, Taotao</au><au>Xu, Haiping</au><au>Keikhosrokiani, Pantea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object‐aware deep feature extraction for feature matching</atitle><jtitle>Concurrency and computation</jtitle><date>2024-02-29</date><risdate>2024</risdate><volume>36</volume><issue>5</issue><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Feature extraction is a fundamental step in the feature matching task. A lot of studies are devoted to feature extraction. Recent researches propose to extract features by pre‐trained neural networks, and the output is used for feature matching. However, the quality and the quantity of the features extracted by these methods are difficult to meet the requirements for the practical applications. In this article, we propose a two‐stage object‐aware‐based feature matching method. Specifically, the proposed object‐aware block predicts a weighted feature map through a mask predictor and a prefeature extractor, so that the subsequent feature extractor pays more attention to the key regions by using the weighted feature map. In addition, we introduce a state‐of‐the‐art model estimation algorithm to align image pair as the input of the object‐aware block. Furthermore, our method also employs an advanced outlier removal algorithm to further improve matching quality. Experimental results show that our object‐aware‐based feature matching method improves the performance of feature matching compared with several state‐of‐the‐art methods.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.7932</doi><orcidid>https://orcid.org/0000-0003-0952-9915</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2024-02, Vol.36 (5)
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2918409748
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Feature extraction
Feature maps
Matching
Neural networks
title Object‐aware deep feature extraction for feature matching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%E2%80%90aware%20deep%20feature%20extraction%20for%20feature%20matching&rft.jtitle=Concurrency%20and%20computation&rft.au=Li,%20Zuoyong&rft.date=2024-02-29&rft.volume=36&rft.issue=5&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.7932&rft_dat=%3Cproquest_cross%3E2918409748%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-f5a7e9f100fd270e9ee6e11be82b670fd4a4b4b4f4325210b2ff18e7fc44348b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918409748&rft_id=info:pmid/&rfr_iscdi=true