Loading…

A preconditioned general two-step modulus-based matrix splitting iteration method for linear complementarity problems of H+-matrices

In this paper, we present a preconditioned general two-step modulus-based iteration method to solve a class of linear complementarity problems. Its convergence theory is proved when the system matrix A is an H + -matrix by using classical and new results from the theory of splitting. Numerical exper...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms 2019-11, Vol.82 (3), p.969-986
Main Authors: Ren, Huan, Wang, Xiang, Tang, Xiao-Bin, Wang, Teng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-79b1ae5518d459315c94ddf724d33b5e6d89333572f1668b6630f58bbcf0e1eb3
cites cdi_FETCH-LOGICAL-c382t-79b1ae5518d459315c94ddf724d33b5e6d89333572f1668b6630f58bbcf0e1eb3
container_end_page 986
container_issue 3
container_start_page 969
container_title Numerical algorithms
container_volume 82
creator Ren, Huan
Wang, Xiang
Tang, Xiao-Bin
Wang, Teng
description In this paper, we present a preconditioned general two-step modulus-based iteration method to solve a class of linear complementarity problems. Its convergence theory is proved when the system matrix A is an H + -matrix by using classical and new results from the theory of splitting. Numerical experiments show that the proposed methods are superior to the existing methods in actual implementation.
doi_str_mv 10.1007/s11075-018-0637-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918491275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918491275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-79b1ae5518d459315c94ddf724d33b5e6d89333572f1668b6630f58bbcf0e1eb3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYsouK7-AG8BjxLNNE3THpdFXWHBi55D20zXLG1TkxT17g83awVPnpIw73tv8pLkEtgNMCZvPQCTgjIoKMu5pOIoWYCQKS3TXBzHOwNJgZfFaXLm_Z6xSKVykXytyOiwsYM2wdgBNdnhgK7qSHi31AccSW_11E2e1pWP474KznwQP3YmBDPsiAlRfmBJj-HVatJaRzozYOVIY_uxwx6HUDkTPmOUrePbE9uSzTX98WrQnycnbdV5vPg9l8nL_d3zekO3Tw-P69WWNrxIA5VlDRUKAYXORMlBNGWmdSvTTHNeC8x1UXLO469byPOiznPOWlHUddMyBKz5MrmafeMebxP6oPZ2ckOMVGkJRVZCKkVUwaxqnPXeYatGZ_rKfSpg6lC2mstWsWx1KFsdmHRmfNQOO3R_zv9D30avhIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918491275</pqid></control><display><type>article</type><title>A preconditioned general two-step modulus-based matrix splitting iteration method for linear complementarity problems of H+-matrices</title><source>Springer Nature</source><creator>Ren, Huan ; Wang, Xiang ; Tang, Xiao-Bin ; Wang, Teng</creator><creatorcontrib>Ren, Huan ; Wang, Xiang ; Tang, Xiao-Bin ; Wang, Teng</creatorcontrib><description>In this paper, we present a preconditioned general two-step modulus-based iteration method to solve a class of linear complementarity problems. Its convergence theory is proved when the system matrix A is an H + -matrix by using classical and new results from the theory of splitting. Numerical experiments show that the proposed methods are superior to the existing methods in actual implementation.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-018-0637-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Iterative methods ; Mathematical analysis ; Methods ; Numeric Computing ; Numerical Analysis ; Original Paper ; Splitting ; Theory of Computation</subject><ispartof>Numerical algorithms, 2019-11, Vol.82 (3), p.969-986</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-79b1ae5518d459315c94ddf724d33b5e6d89333572f1668b6630f58bbcf0e1eb3</citedby><cites>FETCH-LOGICAL-c382t-79b1ae5518d459315c94ddf724d33b5e6d89333572f1668b6630f58bbcf0e1eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ren, Huan</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Tang, Xiao-Bin</creatorcontrib><creatorcontrib>Wang, Teng</creatorcontrib><title>A preconditioned general two-step modulus-based matrix splitting iteration method for linear complementarity problems of H+-matrices</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we present a preconditioned general two-step modulus-based iteration method to solve a class of linear complementarity problems. Its convergence theory is proved when the system matrix A is an H + -matrix by using classical and new results from the theory of splitting. Numerical experiments show that the proposed methods are superior to the existing methods in actual implementation.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Splitting</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYsouK7-AG8BjxLNNE3THpdFXWHBi55D20zXLG1TkxT17g83awVPnpIw73tv8pLkEtgNMCZvPQCTgjIoKMu5pOIoWYCQKS3TXBzHOwNJgZfFaXLm_Z6xSKVykXytyOiwsYM2wdgBNdnhgK7qSHi31AccSW_11E2e1pWP474KznwQP3YmBDPsiAlRfmBJj-HVatJaRzozYOVIY_uxwx6HUDkTPmOUrePbE9uSzTX98WrQnycnbdV5vPg9l8nL_d3zekO3Tw-P69WWNrxIA5VlDRUKAYXORMlBNGWmdSvTTHNeC8x1UXLO469byPOiznPOWlHUddMyBKz5MrmafeMebxP6oPZ2ckOMVGkJRVZCKkVUwaxqnPXeYatGZ_rKfSpg6lC2mstWsWx1KFsdmHRmfNQOO3R_zv9D30avhIE</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Ren, Huan</creator><creator>Wang, Xiang</creator><creator>Tang, Xiao-Bin</creator><creator>Wang, Teng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20191101</creationdate><title>A preconditioned general two-step modulus-based matrix splitting iteration method for linear complementarity problems of H+-matrices</title><author>Ren, Huan ; Wang, Xiang ; Tang, Xiao-Bin ; Wang, Teng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-79b1ae5518d459315c94ddf724d33b5e6d89333572f1668b6630f58bbcf0e1eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Splitting</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Huan</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Tang, Xiao-Bin</creatorcontrib><creatorcontrib>Wang, Teng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Huan</au><au>Wang, Xiang</au><au>Tang, Xiao-Bin</au><au>Wang, Teng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A preconditioned general two-step modulus-based matrix splitting iteration method for linear complementarity problems of H+-matrices</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>82</volume><issue>3</issue><spage>969</spage><epage>986</epage><pages>969-986</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we present a preconditioned general two-step modulus-based iteration method to solve a class of linear complementarity problems. Its convergence theory is proved when the system matrix A is an H + -matrix by using classical and new results from the theory of splitting. Numerical experiments show that the proposed methods are superior to the existing methods in actual implementation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-018-0637-5</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2019-11, Vol.82 (3), p.969-986
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918491275
source Springer Nature
subjects Algebra
Algorithms
Computer Science
Iterative methods
Mathematical analysis
Methods
Numeric Computing
Numerical Analysis
Original Paper
Splitting
Theory of Computation
title A preconditioned general two-step modulus-based matrix splitting iteration method for linear complementarity problems of H+-matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20preconditioned%20general%20two-step%20modulus-based%20matrix%20splitting%20iteration%20method%20for%20linear%20complementarity%20problems%20of%20H+-matrices&rft.jtitle=Numerical%20algorithms&rft.au=Ren,%20Huan&rft.date=2019-11-01&rft.volume=82&rft.issue=3&rft.spage=969&rft.epage=986&rft.pages=969-986&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-018-0637-5&rft_dat=%3Cproquest_cross%3E2918491275%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-79b1ae5518d459315c94ddf724d33b5e6d89333572f1668b6630f58bbcf0e1eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918491275&rft_id=info:pmid/&rfr_iscdi=true