Loading…

Privacy beyond sensitive values

Privacy-preserving data publishing (PPDP) has become one of the hot topics in the field of network security. The existing privacy-preserving work cannot deal with vulnerability in sensitivity, under which an attacker can effectively infer the victim's sensitivity of the sensitive value with limited...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Information sciences 2015-07, Vol.58 (7), p.166-180
Main Authors: Huang, XueZhen, Liu, JiQiang, Han, Zhen, Yang, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-a86072c4c390a11017bf52333e3ae42c2eb0f437cab5161e6f019c0096ae53a3
cites cdi_FETCH-LOGICAL-c413t-a86072c4c390a11017bf52333e3ae42c2eb0f437cab5161e6f019c0096ae53a3
container_end_page 180
container_issue 7
container_start_page 166
container_title Science China. Information sciences
container_volume 58
creator Huang, XueZhen
Liu, JiQiang
Han, Zhen
Yang, Jun
description Privacy-preserving data publishing (PPDP) has become one of the hot topics in the field of network security. The existing privacy-preserving work cannot deal with vulnerability in sensitivity, under which an attacker can effectively infer the victim's sensitivity of the sensitive value with limited knowledge. In this paper, we propose a novel privacy model, (V, L)-anonymity, to avoid sensitivity vulnerability while having the capabilities of the existing PPDP models. This model considers the difference among sensitive values (SV) and applies SV classification, named as sensitivity levels. The model can be applied not only to the single attribute, but also to multiple sensitive attributes situation. We use (l1, l2)-diversity to validate the capability of our model theoretically. We carry out extensive experiments to verify the improvement on effectiveness and efficiency. Furthermore, we present a Levels of Sensitive Values (LSV) measure to calculate the sensitivity level.
doi_str_mv 10.1007/s11432-014-5232-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918558665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665130347</cqvip_id><sourcerecordid>2918558665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-a86072c4c390a11017bf52333e3ae42c2eb0f437cab5161e6f019c0096ae53a3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgqf0Bnix6js5kssnmKEWrUNBDD95CNmbrlrrbJm2h_96ULXpzLvMO74vH2DXCPQLoh4QoSXBAyQuRAZ2xAZbKcDRozjNWWnJN9HHJRiktIR8RCF0O2M17bPbOH8ZVOHTt5ziFNjXbZh_Ge7fahXTFLmq3SmF0-kM2f36aT1747G36OnmccS-RttyVCrTw0pMBhwioqzpXIQrkghRehApqSdq7qkCFQdWAxgMY5UJBjobsrrddx26TY7d22e1imxOtMFgWRalUkVnYs3zsUoqhtuvYfLt4sAj2uITtl7B5CXtcwlLWiF6TMrddhPjn_J_o9hT01bWLTdb9JuUeSEBS0w_iw2mF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918558665</pqid></control><display><type>article</type><title>Privacy beyond sensitive values</title><source>Springer Link</source><creator>Huang, XueZhen ; Liu, JiQiang ; Han, Zhen ; Yang, Jun</creator><creatorcontrib>Huang, XueZhen ; Liu, JiQiang ; Han, Zhen ; Yang, Jun</creatorcontrib><description>Privacy-preserving data publishing (PPDP) has become one of the hot topics in the field of network security. The existing privacy-preserving work cannot deal with vulnerability in sensitivity, under which an attacker can effectively infer the victim's sensitivity of the sensitive value with limited knowledge. In this paper, we propose a novel privacy model, (V, L)-anonymity, to avoid sensitivity vulnerability while having the capabilities of the existing PPDP models. This model considers the difference among sensitive values (SV) and applies SV classification, named as sensitivity levels. The model can be applied not only to the single attribute, but also to multiple sensitive attributes situation. We use (l1, l2)-diversity to validate the capability of our model theoretically. We carry out extensive experiments to verify the improvement on effectiveness and efficiency. Furthermore, we present a Levels of Sensitive Values (LSV) measure to calculate the sensitivity level.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-014-5232-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Computer Science ; Information Systems and Communication Service ; LSV ; Privacy ; Research Paper ; Sensitivity ; 受害人 ; 攻击者 ; 敏感性 ; 数据发布 ; 灵敏度 ; 网络安全 ; 隐私保护</subject><ispartof>Science China. Information sciences, 2015-07, Vol.58 (7), p.166-180</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-a86072c4c390a11017bf52333e3ae42c2eb0f437cab5161e6f019c0096ae53a3</citedby><cites>FETCH-LOGICAL-c413t-a86072c4c390a11017bf52333e3ae42c2eb0f437cab5161e6f019c0096ae53a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, XueZhen</creatorcontrib><creatorcontrib>Liu, JiQiang</creatorcontrib><creatorcontrib>Han, Zhen</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><title>Privacy beyond sensitive values</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>Privacy-preserving data publishing (PPDP) has become one of the hot topics in the field of network security. The existing privacy-preserving work cannot deal with vulnerability in sensitivity, under which an attacker can effectively infer the victim's sensitivity of the sensitive value with limited knowledge. In this paper, we propose a novel privacy model, (V, L)-anonymity, to avoid sensitivity vulnerability while having the capabilities of the existing PPDP models. This model considers the difference among sensitive values (SV) and applies SV classification, named as sensitivity levels. The model can be applied not only to the single attribute, but also to multiple sensitive attributes situation. We use (l1, l2)-diversity to validate the capability of our model theoretically. We carry out extensive experiments to verify the improvement on effectiveness and efficiency. Furthermore, we present a Levels of Sensitive Values (LSV) measure to calculate the sensitivity level.</description><subject>Computer Science</subject><subject>Information Systems and Communication Service</subject><subject>LSV</subject><subject>Privacy</subject><subject>Research Paper</subject><subject>Sensitivity</subject><subject>受害人</subject><subject>攻击者</subject><subject>敏感性</subject><subject>数据发布</subject><subject>灵敏度</subject><subject>网络安全</subject><subject>隐私保护</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgqf0Bnix6js5kssnmKEWrUNBDD95CNmbrlrrbJm2h_96ULXpzLvMO74vH2DXCPQLoh4QoSXBAyQuRAZ2xAZbKcDRozjNWWnJN9HHJRiktIR8RCF0O2M17bPbOH8ZVOHTt5ziFNjXbZh_Ge7fahXTFLmq3SmF0-kM2f36aT1747G36OnmccS-RttyVCrTw0pMBhwioqzpXIQrkghRehApqSdq7qkCFQdWAxgMY5UJBjobsrrddx26TY7d22e1imxOtMFgWRalUkVnYs3zsUoqhtuvYfLt4sAj2uITtl7B5CXtcwlLWiF6TMrddhPjn_J_o9hT01bWLTdb9JuUeSEBS0w_iw2mF</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Huang, XueZhen</creator><creator>Liu, JiQiang</creator><creator>Han, Zhen</creator><creator>Yang, Jun</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150701</creationdate><title>Privacy beyond sensitive values</title><author>Huang, XueZhen ; Liu, JiQiang ; Han, Zhen ; Yang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-a86072c4c390a11017bf52333e3ae42c2eb0f437cab5161e6f019c0096ae53a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer Science</topic><topic>Information Systems and Communication Service</topic><topic>LSV</topic><topic>Privacy</topic><topic>Research Paper</topic><topic>Sensitivity</topic><topic>受害人</topic><topic>攻击者</topic><topic>敏感性</topic><topic>数据发布</topic><topic>灵敏度</topic><topic>网络安全</topic><topic>隐私保护</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, XueZhen</creatorcontrib><creatorcontrib>Liu, JiQiang</creatorcontrib><creatorcontrib>Han, Zhen</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, XueZhen</au><au>Liu, JiQiang</au><au>Han, Zhen</au><au>Yang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy beyond sensitive values</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>58</volume><issue>7</issue><spage>166</spage><epage>180</epage><pages>166-180</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>Privacy-preserving data publishing (PPDP) has become one of the hot topics in the field of network security. The existing privacy-preserving work cannot deal with vulnerability in sensitivity, under which an attacker can effectively infer the victim's sensitivity of the sensitive value with limited knowledge. In this paper, we propose a novel privacy model, (V, L)-anonymity, to avoid sensitivity vulnerability while having the capabilities of the existing PPDP models. This model considers the difference among sensitive values (SV) and applies SV classification, named as sensitivity levels. The model can be applied not only to the single attribute, but also to multiple sensitive attributes situation. We use (l1, l2)-diversity to validate the capability of our model theoretically. We carry out extensive experiments to verify the improvement on effectiveness and efficiency. Furthermore, we present a Levels of Sensitive Values (LSV) measure to calculate the sensitivity level.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-014-5232-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2015-07, Vol.58 (7), p.166-180
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_journals_2918558665
source Springer Link
subjects Computer Science
Information Systems and Communication Service
LSV
Privacy
Research Paper
Sensitivity
受害人
攻击者
敏感性
数据发布
灵敏度
网络安全
隐私保护
title Privacy beyond sensitive values
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy%20beyond%20sensitive%20values&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Huang,%20XueZhen&rft.date=2015-07-01&rft.volume=58&rft.issue=7&rft.spage=166&rft.epage=180&rft.pages=166-180&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-014-5232-3&rft_dat=%3Cproquest_cross%3E2918558665%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-a86072c4c390a11017bf52333e3ae42c2eb0f437cab5161e6f019c0096ae53a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918558665&rft_id=info:pmid/&rft_cqvip_id=665130347&rfr_iscdi=true