Loading…

TIENet: task-oriented image enhancement network for degraded object detection

Degraded images often suffer from low contrast, color deviations, and blurring details, which significantly affect the performance of detectors. Many previous works have attempted to obtain high-quality images based on human perception using image enhancement algorithms. However, these enhancement a...

Full description

Saved in:
Bibliographic Details
Published in:Signal, image and video processing image and video processing, 2024-02, Vol.18 (1), p.1-8
Main Authors: Wang, Yudong, Guo, Jichang, Wang, Ruining, He, Wanru, Li, Chongyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313
cites cdi_FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313
container_end_page 8
container_issue 1
container_start_page 1
container_title Signal, image and video processing
container_volume 18
creator Wang, Yudong
Guo, Jichang
Wang, Ruining
He, Wanru
Li, Chongyi
description Degraded images often suffer from low contrast, color deviations, and blurring details, which significantly affect the performance of detectors. Many previous works have attempted to obtain high-quality images based on human perception using image enhancement algorithms. However, these enhancement algorithms usually suppress the performance of degraded object detection. In this paper, we propose a task-oriented image enhancement network (TIENet) to directly improve degraded object detection’s performance by enhancing the degraded images. Unlike common human perception-based image-to-image methods, TIENet is a zero-reference enhancement network, which obtains a detection-favorable structure image that is added to the original degraded image. In addition, this paper presents a fast Fourier transform-based structure loss for the enhancement task. With the new loss, our TIENet enables the structure image obtained to enhance more useful detection-favorable structural information and suppress irrelevant information. Extensive experiments and comprehensive evaluations on underwater (URPC2020) and foggy (RTTS) datasets show that our proposed framework can achieve 0.5–1.6% AP absolute improvements on classic detectors, including Faster R-CNN, RetinaNet, FCOS, ATSS, PAA, and TOOD. Besides, our method also generalizes well to the PASCAL VOC dataset, which can achieve 0.2–0.7% gains. We expect this study can draw more attention to high-level task-oriented degraded image enhancement. The code and pre-trained models are available at https://github.com/BIGWangYuDong/lqit/tree/main/configs/detection/tienet .
doi_str_mv 10.1007/s11760-023-02695-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918559854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918559854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxKb2C3jaxDMKy8KCN9NUbVL1Us-EP7O1rV0q0Bi_vegavUkyGYb83iPzEDqn5JIS0l4lSltBMKlZKaE4VkdoRKVgmLaUHv_eCTtFk5Q2pBxWt1LIEXpYzmePkK-rbNIWh7iGPoOv1juzggr6F9M72JW3qof8HuK26kKsPKyi8QULdgMulzmXtg79GTrpzGuCyU8fo-fb2XJ6jxdPd_PpzQI7RlXG0lnpTNc44kEwJVqg1FrWtMZzIzwx0gnObWMs8K7Avi67WQbW8loSRtkYXQy--xjeDpCy3oRD7MuXulZUcq4kbwpVD5SLIaUInd7Hslj80JTor-T0kJwu7vo7Oa2KiA2iVOB-BfHP-h_VJ92vcTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918559854</pqid></control><display><type>article</type><title>TIENet: task-oriented image enhancement network for degraded object detection</title><source>Springer Link</source><creator>Wang, Yudong ; Guo, Jichang ; Wang, Ruining ; He, Wanru ; Li, Chongyi</creator><creatorcontrib>Wang, Yudong ; Guo, Jichang ; Wang, Ruining ; He, Wanru ; Li, Chongyi</creatorcontrib><description>Degraded images often suffer from low contrast, color deviations, and blurring details, which significantly affect the performance of detectors. Many previous works have attempted to obtain high-quality images based on human perception using image enhancement algorithms. However, these enhancement algorithms usually suppress the performance of degraded object detection. In this paper, we propose a task-oriented image enhancement network (TIENet) to directly improve degraded object detection’s performance by enhancing the degraded images. Unlike common human perception-based image-to-image methods, TIENet is a zero-reference enhancement network, which obtains a detection-favorable structure image that is added to the original degraded image. In addition, this paper presents a fast Fourier transform-based structure loss for the enhancement task. With the new loss, our TIENet enables the structure image obtained to enhance more useful detection-favorable structural information and suppress irrelevant information. Extensive experiments and comprehensive evaluations on underwater (URPC2020) and foggy (RTTS) datasets show that our proposed framework can achieve 0.5–1.6% AP absolute improvements on classic detectors, including Faster R-CNN, RetinaNet, FCOS, ATSS, PAA, and TOOD. Besides, our method also generalizes well to the PASCAL VOC dataset, which can achieve 0.2–0.7% gains. We expect this study can draw more attention to high-level task-oriented degraded image enhancement. The code and pre-trained models are available at https://github.com/BIGWangYuDong/lqit/tree/main/configs/detection/tienet .</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-023-02695-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Blurring ; Computer Imaging ; Computer Science ; Datasets ; Detectors ; Fast Fourier transformations ; Fourier transforms ; Image contrast ; Image degradation ; Image enhancement ; Image Processing and Computer Vision ; Image quality ; Multimedia Information Systems ; Object recognition ; Original Paper ; Pattern Recognition and Graphics ; Perception ; Performance degradation ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2024-02, Vol.18 (1), p.1-8</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313</citedby><cites>FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Yudong</creatorcontrib><creatorcontrib>Guo, Jichang</creatorcontrib><creatorcontrib>Wang, Ruining</creatorcontrib><creatorcontrib>He, Wanru</creatorcontrib><creatorcontrib>Li, Chongyi</creatorcontrib><title>TIENet: task-oriented image enhancement network for degraded object detection</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Degraded images often suffer from low contrast, color deviations, and blurring details, which significantly affect the performance of detectors. Many previous works have attempted to obtain high-quality images based on human perception using image enhancement algorithms. However, these enhancement algorithms usually suppress the performance of degraded object detection. In this paper, we propose a task-oriented image enhancement network (TIENet) to directly improve degraded object detection’s performance by enhancing the degraded images. Unlike common human perception-based image-to-image methods, TIENet is a zero-reference enhancement network, which obtains a detection-favorable structure image that is added to the original degraded image. In addition, this paper presents a fast Fourier transform-based structure loss for the enhancement task. With the new loss, our TIENet enables the structure image obtained to enhance more useful detection-favorable structural information and suppress irrelevant information. Extensive experiments and comprehensive evaluations on underwater (URPC2020) and foggy (RTTS) datasets show that our proposed framework can achieve 0.5–1.6% AP absolute improvements on classic detectors, including Faster R-CNN, RetinaNet, FCOS, ATSS, PAA, and TOOD. Besides, our method also generalizes well to the PASCAL VOC dataset, which can achieve 0.2–0.7% gains. We expect this study can draw more attention to high-level task-oriented degraded image enhancement. The code and pre-trained models are available at https://github.com/BIGWangYuDong/lqit/tree/main/configs/detection/tienet .</description><subject>Algorithms</subject><subject>Blurring</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Image contrast</subject><subject>Image degradation</subject><subject>Image enhancement</subject><subject>Image Processing and Computer Vision</subject><subject>Image quality</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Perception</subject><subject>Performance degradation</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxKb2C3jaxDMKy8KCN9NUbVL1Us-EP7O1rV0q0Bi_vegavUkyGYb83iPzEDqn5JIS0l4lSltBMKlZKaE4VkdoRKVgmLaUHv_eCTtFk5Q2pBxWt1LIEXpYzmePkK-rbNIWh7iGPoOv1juzggr6F9M72JW3qof8HuK26kKsPKyi8QULdgMulzmXtg79GTrpzGuCyU8fo-fb2XJ6jxdPd_PpzQI7RlXG0lnpTNc44kEwJVqg1FrWtMZzIzwx0gnObWMs8K7Avi67WQbW8loSRtkYXQy--xjeDpCy3oRD7MuXulZUcq4kbwpVD5SLIaUInd7Hslj80JTor-T0kJwu7vo7Oa2KiA2iVOB-BfHP-h_VJ92vcTo</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wang, Yudong</creator><creator>Guo, Jichang</creator><creator>Wang, Ruining</creator><creator>He, Wanru</creator><creator>Li, Chongyi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>TIENet: task-oriented image enhancement network for degraded object detection</title><author>Wang, Yudong ; Guo, Jichang ; Wang, Ruining ; He, Wanru ; Li, Chongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Blurring</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Image contrast</topic><topic>Image degradation</topic><topic>Image enhancement</topic><topic>Image Processing and Computer Vision</topic><topic>Image quality</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Perception</topic><topic>Performance degradation</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yudong</creatorcontrib><creatorcontrib>Guo, Jichang</creatorcontrib><creatorcontrib>Wang, Ruining</creatorcontrib><creatorcontrib>He, Wanru</creatorcontrib><creatorcontrib>Li, Chongyi</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yudong</au><au>Guo, Jichang</au><au>Wang, Ruining</au><au>He, Wanru</au><au>Li, Chongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TIENet: task-oriented image enhancement network for degraded object detection</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Degraded images often suffer from low contrast, color deviations, and blurring details, which significantly affect the performance of detectors. Many previous works have attempted to obtain high-quality images based on human perception using image enhancement algorithms. However, these enhancement algorithms usually suppress the performance of degraded object detection. In this paper, we propose a task-oriented image enhancement network (TIENet) to directly improve degraded object detection’s performance by enhancing the degraded images. Unlike common human perception-based image-to-image methods, TIENet is a zero-reference enhancement network, which obtains a detection-favorable structure image that is added to the original degraded image. In addition, this paper presents a fast Fourier transform-based structure loss for the enhancement task. With the new loss, our TIENet enables the structure image obtained to enhance more useful detection-favorable structural information and suppress irrelevant information. Extensive experiments and comprehensive evaluations on underwater (URPC2020) and foggy (RTTS) datasets show that our proposed framework can achieve 0.5–1.6% AP absolute improvements on classic detectors, including Faster R-CNN, RetinaNet, FCOS, ATSS, PAA, and TOOD. Besides, our method also generalizes well to the PASCAL VOC dataset, which can achieve 0.2–0.7% gains. We expect this study can draw more attention to high-level task-oriented degraded image enhancement. The code and pre-trained models are available at https://github.com/BIGWangYuDong/lqit/tree/main/configs/detection/tienet .</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-023-02695-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2024-02, Vol.18 (1), p.1-8
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2918559854
source Springer Link
subjects Algorithms
Blurring
Computer Imaging
Computer Science
Datasets
Detectors
Fast Fourier transformations
Fourier transforms
Image contrast
Image degradation
Image enhancement
Image Processing and Computer Vision
Image quality
Multimedia Information Systems
Object recognition
Original Paper
Pattern Recognition and Graphics
Perception
Performance degradation
Signal,Image and Speech Processing
Vision
title TIENet: task-oriented image enhancement network for degraded object detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TIENet:%20task-oriented%20image%20enhancement%20network%20for%20degraded%20object%20detection&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Wang,%20Yudong&rft.date=2024-02-01&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-023-02695-9&rft_dat=%3Cproquest_cross%3E2918559854%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918559854&rft_id=info:pmid/&rfr_iscdi=true