Loading…
TIENet: task-oriented image enhancement network for degraded object detection
Degraded images often suffer from low contrast, color deviations, and blurring details, which significantly affect the performance of detectors. Many previous works have attempted to obtain high-quality images based on human perception using image enhancement algorithms. However, these enhancement a...
Saved in:
Published in: | Signal, image and video processing image and video processing, 2024-02, Vol.18 (1), p.1-8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 1 |
container_title | Signal, image and video processing |
container_volume | 18 |
creator | Wang, Yudong Guo, Jichang Wang, Ruining He, Wanru Li, Chongyi |
description | Degraded images often suffer from low contrast, color deviations, and blurring details, which significantly affect the performance of detectors. Many previous works have attempted to obtain high-quality images based on human perception using image enhancement algorithms. However, these enhancement algorithms usually suppress the performance of degraded object detection. In this paper, we propose a task-oriented image enhancement network (TIENet) to directly improve degraded object detection’s performance by enhancing the degraded images. Unlike common human perception-based image-to-image methods, TIENet is a zero-reference enhancement network, which obtains a detection-favorable structure image that is added to the original degraded image. In addition, this paper presents a fast Fourier transform-based structure loss for the enhancement task. With the new loss, our TIENet enables the structure image obtained to enhance more useful detection-favorable structural information and suppress irrelevant information. Extensive experiments and comprehensive evaluations on underwater (URPC2020) and foggy (RTTS) datasets show that our proposed framework can achieve 0.5–1.6% AP absolute improvements on classic detectors, including Faster R-CNN, RetinaNet, FCOS, ATSS, PAA, and TOOD. Besides, our method also generalizes well to the PASCAL VOC dataset, which can achieve 0.2–0.7% gains. We expect this study can draw more attention to high-level task-oriented degraded image enhancement. The code and pre-trained models are available at
https://github.com/BIGWangYuDong/lqit/tree/main/configs/detection/tienet
. |
doi_str_mv | 10.1007/s11760-023-02695-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918559854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918559854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxKb2C3jaxDMKy8KCN9NUbVL1Us-EP7O1rV0q0Bi_vegavUkyGYb83iPzEDqn5JIS0l4lSltBMKlZKaE4VkdoRKVgmLaUHv_eCTtFk5Q2pBxWt1LIEXpYzmePkK-rbNIWh7iGPoOv1juzggr6F9M72JW3qof8HuK26kKsPKyi8QULdgMulzmXtg79GTrpzGuCyU8fo-fb2XJ6jxdPd_PpzQI7RlXG0lnpTNc44kEwJVqg1FrWtMZzIzwx0gnObWMs8K7Avi67WQbW8loSRtkYXQy--xjeDpCy3oRD7MuXulZUcq4kbwpVD5SLIaUInd7Hslj80JTor-T0kJwu7vo7Oa2KiA2iVOB-BfHP-h_VJ92vcTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918559854</pqid></control><display><type>article</type><title>TIENet: task-oriented image enhancement network for degraded object detection</title><source>Springer Link</source><creator>Wang, Yudong ; Guo, Jichang ; Wang, Ruining ; He, Wanru ; Li, Chongyi</creator><creatorcontrib>Wang, Yudong ; Guo, Jichang ; Wang, Ruining ; He, Wanru ; Li, Chongyi</creatorcontrib><description>Degraded images often suffer from low contrast, color deviations, and blurring details, which significantly affect the performance of detectors. Many previous works have attempted to obtain high-quality images based on human perception using image enhancement algorithms. However, these enhancement algorithms usually suppress the performance of degraded object detection. In this paper, we propose a task-oriented image enhancement network (TIENet) to directly improve degraded object detection’s performance by enhancing the degraded images. Unlike common human perception-based image-to-image methods, TIENet is a zero-reference enhancement network, which obtains a detection-favorable structure image that is added to the original degraded image. In addition, this paper presents a fast Fourier transform-based structure loss for the enhancement task. With the new loss, our TIENet enables the structure image obtained to enhance more useful detection-favorable structural information and suppress irrelevant information. Extensive experiments and comprehensive evaluations on underwater (URPC2020) and foggy (RTTS) datasets show that our proposed framework can achieve 0.5–1.6% AP absolute improvements on classic detectors, including Faster R-CNN, RetinaNet, FCOS, ATSS, PAA, and TOOD. Besides, our method also generalizes well to the PASCAL VOC dataset, which can achieve 0.2–0.7% gains. We expect this study can draw more attention to high-level task-oriented degraded image enhancement. The code and pre-trained models are available at
https://github.com/BIGWangYuDong/lqit/tree/main/configs/detection/tienet
.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-023-02695-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Blurring ; Computer Imaging ; Computer Science ; Datasets ; Detectors ; Fast Fourier transformations ; Fourier transforms ; Image contrast ; Image degradation ; Image enhancement ; Image Processing and Computer Vision ; Image quality ; Multimedia Information Systems ; Object recognition ; Original Paper ; Pattern Recognition and Graphics ; Perception ; Performance degradation ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2024-02, Vol.18 (1), p.1-8</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313</citedby><cites>FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Yudong</creatorcontrib><creatorcontrib>Guo, Jichang</creatorcontrib><creatorcontrib>Wang, Ruining</creatorcontrib><creatorcontrib>He, Wanru</creatorcontrib><creatorcontrib>Li, Chongyi</creatorcontrib><title>TIENet: task-oriented image enhancement network for degraded object detection</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Degraded images often suffer from low contrast, color deviations, and blurring details, which significantly affect the performance of detectors. Many previous works have attempted to obtain high-quality images based on human perception using image enhancement algorithms. However, these enhancement algorithms usually suppress the performance of degraded object detection. In this paper, we propose a task-oriented image enhancement network (TIENet) to directly improve degraded object detection’s performance by enhancing the degraded images. Unlike common human perception-based image-to-image methods, TIENet is a zero-reference enhancement network, which obtains a detection-favorable structure image that is added to the original degraded image. In addition, this paper presents a fast Fourier transform-based structure loss for the enhancement task. With the new loss, our TIENet enables the structure image obtained to enhance more useful detection-favorable structural information and suppress irrelevant information. Extensive experiments and comprehensive evaluations on underwater (URPC2020) and foggy (RTTS) datasets show that our proposed framework can achieve 0.5–1.6% AP absolute improvements on classic detectors, including Faster R-CNN, RetinaNet, FCOS, ATSS, PAA, and TOOD. Besides, our method also generalizes well to the PASCAL VOC dataset, which can achieve 0.2–0.7% gains. We expect this study can draw more attention to high-level task-oriented degraded image enhancement. The code and pre-trained models are available at
https://github.com/BIGWangYuDong/lqit/tree/main/configs/detection/tienet
.</description><subject>Algorithms</subject><subject>Blurring</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Image contrast</subject><subject>Image degradation</subject><subject>Image enhancement</subject><subject>Image Processing and Computer Vision</subject><subject>Image quality</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Perception</subject><subject>Performance degradation</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxKb2C3jaxDMKy8KCN9NUbVL1Us-EP7O1rV0q0Bi_vegavUkyGYb83iPzEDqn5JIS0l4lSltBMKlZKaE4VkdoRKVgmLaUHv_eCTtFk5Q2pBxWt1LIEXpYzmePkK-rbNIWh7iGPoOv1juzggr6F9M72JW3qof8HuK26kKsPKyi8QULdgMulzmXtg79GTrpzGuCyU8fo-fb2XJ6jxdPd_PpzQI7RlXG0lnpTNc44kEwJVqg1FrWtMZzIzwx0gnObWMs8K7Avi67WQbW8loSRtkYXQy--xjeDpCy3oRD7MuXulZUcq4kbwpVD5SLIaUInd7Hslj80JTor-T0kJwu7vo7Oa2KiA2iVOB-BfHP-h_VJ92vcTo</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wang, Yudong</creator><creator>Guo, Jichang</creator><creator>Wang, Ruining</creator><creator>He, Wanru</creator><creator>Li, Chongyi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>TIENet: task-oriented image enhancement network for degraded object detection</title><author>Wang, Yudong ; Guo, Jichang ; Wang, Ruining ; He, Wanru ; Li, Chongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Blurring</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Image contrast</topic><topic>Image degradation</topic><topic>Image enhancement</topic><topic>Image Processing and Computer Vision</topic><topic>Image quality</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Perception</topic><topic>Performance degradation</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yudong</creatorcontrib><creatorcontrib>Guo, Jichang</creatorcontrib><creatorcontrib>Wang, Ruining</creatorcontrib><creatorcontrib>He, Wanru</creatorcontrib><creatorcontrib>Li, Chongyi</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yudong</au><au>Guo, Jichang</au><au>Wang, Ruining</au><au>He, Wanru</au><au>Li, Chongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TIENet: task-oriented image enhancement network for degraded object detection</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Degraded images often suffer from low contrast, color deviations, and blurring details, which significantly affect the performance of detectors. Many previous works have attempted to obtain high-quality images based on human perception using image enhancement algorithms. However, these enhancement algorithms usually suppress the performance of degraded object detection. In this paper, we propose a task-oriented image enhancement network (TIENet) to directly improve degraded object detection’s performance by enhancing the degraded images. Unlike common human perception-based image-to-image methods, TIENet is a zero-reference enhancement network, which obtains a detection-favorable structure image that is added to the original degraded image. In addition, this paper presents a fast Fourier transform-based structure loss for the enhancement task. With the new loss, our TIENet enables the structure image obtained to enhance more useful detection-favorable structural information and suppress irrelevant information. Extensive experiments and comprehensive evaluations on underwater (URPC2020) and foggy (RTTS) datasets show that our proposed framework can achieve 0.5–1.6% AP absolute improvements on classic detectors, including Faster R-CNN, RetinaNet, FCOS, ATSS, PAA, and TOOD. Besides, our method also generalizes well to the PASCAL VOC dataset, which can achieve 0.2–0.7% gains. We expect this study can draw more attention to high-level task-oriented degraded image enhancement. The code and pre-trained models are available at
https://github.com/BIGWangYuDong/lqit/tree/main/configs/detection/tienet
.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-023-02695-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2024-02, Vol.18 (1), p.1-8 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_2918559854 |
source | Springer Link |
subjects | Algorithms Blurring Computer Imaging Computer Science Datasets Detectors Fast Fourier transformations Fourier transforms Image contrast Image degradation Image enhancement Image Processing and Computer Vision Image quality Multimedia Information Systems Object recognition Original Paper Pattern Recognition and Graphics Perception Performance degradation Signal,Image and Speech Processing Vision |
title | TIENet: task-oriented image enhancement network for degraded object detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TIENet:%20task-oriented%20image%20enhancement%20network%20for%20degraded%20object%20detection&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Wang,%20Yudong&rft.date=2024-02-01&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-023-02695-9&rft_dat=%3Cproquest_cross%3E2918559854%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8cb8caf4c0de63967e11bb347ad5a6d0a8c655b4abe5f8cbd2023b3ebb5280313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918559854&rft_id=info:pmid/&rfr_iscdi=true |