Loading…

Improving Efficiency of Web Application Firewall to Detect Code Injection Attacks with Random Forest Method and Analysis Attributes HTTP Request

In the era of information technology, the use of computer technology for both work and personal use is growing rapidly with time. Unfortunately, with the increasing number and size of computer networks and systems, their vulnerability also increases. Protecting web applications of organizations is b...

Full description

Saved in:
Bibliographic Details
Published in:Programming and computer software 2020-09, Vol.46 (5), p.351-361
Main Author: Thang, Nguyen Manh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the era of information technology, the use of computer technology for both work and personal use is growing rapidly with time. Unfortunately, with the increasing number and size of computer networks and systems, their vulnerability also increases. Protecting web applications of organizations is becoming increasingly relevant as most of the transactions are carried out over the Internet. Traditional security devices control attacks at the network level, but modern web attacks occur through the HTTP protocol at the application level. On the other hand, the attacks often come together. For example, a denial of service attack is used to hide code injection attacks. The system administrator spends a lot of time to keep the system running, but they may forget the code injection attacks. Therefore, the main task for system administrators is to detect network attacks at the application level using a web application firewall and apply effective algorithms in this firewall to train web application firewalls automatically for increasing his efficiency. The article introduces parameterization of the task for increasing the accuracy of query classification by the random forest method, thereby creating the basis for detecting attacks at the application level.
ISSN:0361-7688
1608-3261
DOI:10.1134/S0361768820050072