Loading…
Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors
Pipeline blockage by gas hydrates is a serious problem in the petroleum industry. Low-dosage inhibitors have been developed for its cost-effective and environmentally acceptable characteristics. In a 1.072-L reactor with methane, ethane and propane gas mixture under the pressure of about 8.5 MPa at...
Saved in:
Published in: | Science China. Chemistry 2010-12, Vol.53 (12), p.2622-2627 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pipeline blockage by gas hydrates is a serious problem in the petroleum industry. Low-dosage inhibitors have been developed for its cost-effective and environmentally acceptable characteristics. In a 1.072-L reactor with methane, ethane and propane gas mixture under the pressure of about 8.5 MPa at 4 °C, hydrate formation was investigated with low-dosage hydrate inhibitors PVP and GHI1, the change of the compressibility factor and gas composition in the gas phase was analyzed, the gas contents in hydrates were compared with PVP and GHI1 added, and the inhibition mechanism of GHI1 was discussed. The results show that PVP and GHI1 could effectively inhibit the growth of gas hydrates but not nucleation. Under the experimental condition with PVP added, methane and ethane occupied the small cavities of the hydrate crystal unit and the ability of ethane entering into hydrate cavities was weaker than that of methane. GHI1 could effectively inhibit molecules which could more readily form hydrates. The ether and hydroxy group of diethylene glycol monobutyl ether have the responsibility for stronger inhibition ability of GHI1 than PVP. |
---|---|
ISSN: | 1674-7291 1869-1870 |
DOI: | 10.1007/s11426-010-4145-2 |