Loading…
Entropy of black holes with arbitrary shapes in loop quantum gravity
The quasi-local notion of an isolated horizon is employed to study the entropy of black holes without any particular symmetry in loop quantum gravity. The idea of characterizing the shape of a horizon by a sequence of local areas is successfully applied in the scheme to calculate the entropy by the...
Saved in:
Published in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2021-12, Vol.64 (12), p.120411, Article 120411 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The quasi-local notion of an isolated horizon is employed to study the entropy of black holes without any particular symmetry in loop quantum gravity. The idea of characterizing the shape of a horizon by a sequence of local areas is successfully applied in the scheme to calculate the entropy by the
S O
(1, 1) BF boundary theory matching loop quantum gravity in the bulk. The generating function for calculating the microscopical degrees of freedom of a given isolated horizon is obtained. Numerical computations of small black holes indicate a new entropy formula containing the quantum correction related to the partition of the horizon. Further evidence shows that, for a given horizon area, the entropy decreases as a black hole deviates from the spherically symmetric one, and the entropy formula is also well suitable for big black holes. |
---|---|
ISSN: | 1674-7348 1869-1927 |
DOI: | 10.1007/s11433-021-1770-3 |