Loading…
Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations
We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also...
Saved in:
Published in: | Numerical algorithms 2023-02, Vol.92 (2), p.1425-1449 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313 |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313 |
container_end_page | 1449 |
container_issue | 2 |
container_start_page | 1425 |
container_title | Numerical algorithms |
container_volume | 92 |
creator | Fouladi, Somayeh Mokhtari, Reza Dahaghin, Mohammad Shafi |
description | We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also reduced. We are particularly interested in improving the computational efficiency in comparison to the original schemes, aiming to preserve the properties of the LDG method. We also deal with the method’s stability and convergence analyses and discuss its computational time. Finally, some numerical simulations are carried out to confirm the theoretical results. |
doi_str_mv | 10.1007/s11075-022-01347-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918587101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918587101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313</originalsourceid><addsrcrecordid>eNp9kE1PxCAURYnRxHH0D7gicY0C5aNdmolfySSz0TVhKIyMbekANfHfy1gTd64g993z8nIAuCb4lmAs7xIhWHKEKUWYVEwiegIWhEuKGir4afljIhGpmvocXKS0x7hgVC5A3Iw26hwiSmPnc_bDDnbB6A62PpkwlGAKU4JPurPxww-wt_k9tNCFCPupyx61vrdD8mEoTOcHqyMs3Kc1uWRl6tx0nEJ7mPQxSpfgzOku2avfdwneHh9eV89ovXl6Wd2vkaGsyeXwijNZN1wLLI1w1lHDaqOZwQ3ZWq6paFottowSih1xeMuFkC2TojWOVaRagpt57xjDYbIpq32YYjkzKdqQmteySCktOrdMDClF69QYfa_jlyJYHd2q2a0qbtWPW0ULVM1QKuVhZ-Pf6n-ob8-dfws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918587101</pqid></control><display><type>article</type><title>Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations</title><source>Springer Nature</source><creator>Fouladi, Somayeh ; Mokhtari, Reza ; Dahaghin, Mohammad Shafi</creator><creatorcontrib>Fouladi, Somayeh ; Mokhtari, Reza ; Dahaghin, Mohammad Shafi</creatorcontrib><description>We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also reduced. We are particularly interested in improving the computational efficiency in comparison to the original schemes, aiming to preserve the properties of the LDG method. We also deal with the method’s stability and convergence analyses and discuss its computational time. Finally, some numerical simulations are carried out to confirm the theoretical results.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-022-01347-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computational efficiency ; Computer Science ; Computing time ; Convection-diffusion equation ; Decomposition ; Galerkin method ; Mathematical analysis ; Methods ; Numeric Computing ; Numerical Analysis ; Original Paper ; Partial differential equations ; Splitting ; Stability analysis ; Theory of Computation</subject><ispartof>Numerical algorithms, 2023-02, Vol.92 (2), p.1425-1449</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313</citedby><cites>FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313</cites><orcidid>0000-0003-3643-1892 ; 0000-0002-1420-0949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fouladi, Somayeh</creatorcontrib><creatorcontrib>Mokhtari, Reza</creatorcontrib><creatorcontrib>Dahaghin, Mohammad Shafi</creatorcontrib><title>Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also reduced. We are particularly interested in improving the computational efficiency in comparison to the original schemes, aiming to preserve the properties of the LDG method. We also deal with the method’s stability and convergence analyses and discuss its computational time. Finally, some numerical simulations are carried out to confirm the theoretical results.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computational efficiency</subject><subject>Computer Science</subject><subject>Computing time</subject><subject>Convection-diffusion equation</subject><subject>Decomposition</subject><subject>Galerkin method</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Splitting</subject><subject>Stability analysis</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAURYnRxHH0D7gicY0C5aNdmolfySSz0TVhKIyMbekANfHfy1gTd64g993z8nIAuCb4lmAs7xIhWHKEKUWYVEwiegIWhEuKGir4afljIhGpmvocXKS0x7hgVC5A3Iw26hwiSmPnc_bDDnbB6A62PpkwlGAKU4JPurPxww-wt_k9tNCFCPupyx61vrdD8mEoTOcHqyMs3Kc1uWRl6tx0nEJ7mPQxSpfgzOku2avfdwneHh9eV89ovXl6Wd2vkaGsyeXwijNZN1wLLI1w1lHDaqOZwQ3ZWq6paFottowSih1xeMuFkC2TojWOVaRagpt57xjDYbIpq32YYjkzKdqQmteySCktOrdMDClF69QYfa_jlyJYHd2q2a0qbtWPW0ULVM1QKuVhZ-Pf6n-ob8-dfws</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Fouladi, Somayeh</creator><creator>Mokhtari, Reza</creator><creator>Dahaghin, Mohammad Shafi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3643-1892</orcidid><orcidid>https://orcid.org/0000-0002-1420-0949</orcidid></search><sort><creationdate>20230201</creationdate><title>Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations</title><author>Fouladi, Somayeh ; Mokhtari, Reza ; Dahaghin, Mohammad Shafi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computational efficiency</topic><topic>Computer Science</topic><topic>Computing time</topic><topic>Convection-diffusion equation</topic><topic>Decomposition</topic><topic>Galerkin method</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Splitting</topic><topic>Stability analysis</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fouladi, Somayeh</creatorcontrib><creatorcontrib>Mokhtari, Reza</creatorcontrib><creatorcontrib>Dahaghin, Mohammad Shafi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fouladi, Somayeh</au><au>Mokhtari, Reza</au><au>Dahaghin, Mohammad Shafi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>92</volume><issue>2</issue><spage>1425</spage><epage>1449</epage><pages>1425-1449</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also reduced. We are particularly interested in improving the computational efficiency in comparison to the original schemes, aiming to preserve the properties of the LDG method. We also deal with the method’s stability and convergence analyses and discuss its computational time. Finally, some numerical simulations are carried out to confirm the theoretical results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-022-01347-2</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-3643-1892</orcidid><orcidid>https://orcid.org/0000-0002-1420-0949</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2023-02, Vol.92 (2), p.1425-1449 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918587101 |
source | Springer Nature |
subjects | Algebra Algorithms Computational efficiency Computer Science Computing time Convection-diffusion equation Decomposition Galerkin method Mathematical analysis Methods Numeric Computing Numerical Analysis Original Paper Partial differential equations Splitting Stability analysis Theory of Computation |
title | Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operator-splitting%20local%20discontinuous%20Galerkin%20method%20for%20multi-dimensional%20linear%20convection-diffusion%20equations&rft.jtitle=Numerical%20algorithms&rft.au=Fouladi,%20Somayeh&rft.date=2023-02-01&rft.volume=92&rft.issue=2&rft.spage=1425&rft.epage=1449&rft.pages=1425-1449&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-022-01347-2&rft_dat=%3Cproquest_cross%3E2918587101%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918587101&rft_id=info:pmid/&rfr_iscdi=true |