Loading…

Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations

We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms 2023-02, Vol.92 (2), p.1425-1449
Main Authors: Fouladi, Somayeh, Mokhtari, Reza, Dahaghin, Mohammad Shafi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313
cites cdi_FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313
container_end_page 1449
container_issue 2
container_start_page 1425
container_title Numerical algorithms
container_volume 92
creator Fouladi, Somayeh
Mokhtari, Reza
Dahaghin, Mohammad Shafi
description We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also reduced. We are particularly interested in improving the computational efficiency in comparison to the original schemes, aiming to preserve the properties of the LDG method. We also deal with the method’s stability and convergence analyses and discuss its computational time. Finally, some numerical simulations are carried out to confirm the theoretical results.
doi_str_mv 10.1007/s11075-022-01347-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918587101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918587101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313</originalsourceid><addsrcrecordid>eNp9kE1PxCAURYnRxHH0D7gicY0C5aNdmolfySSz0TVhKIyMbekANfHfy1gTd64g993z8nIAuCb4lmAs7xIhWHKEKUWYVEwiegIWhEuKGir4afljIhGpmvocXKS0x7hgVC5A3Iw26hwiSmPnc_bDDnbB6A62PpkwlGAKU4JPurPxww-wt_k9tNCFCPupyx61vrdD8mEoTOcHqyMs3Kc1uWRl6tx0nEJ7mPQxSpfgzOku2avfdwneHh9eV89ovXl6Wd2vkaGsyeXwijNZN1wLLI1w1lHDaqOZwQ3ZWq6paFottowSih1xeMuFkC2TojWOVaRagpt57xjDYbIpq32YYjkzKdqQmteySCktOrdMDClF69QYfa_jlyJYHd2q2a0qbtWPW0ULVM1QKuVhZ-Pf6n-ob8-dfws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918587101</pqid></control><display><type>article</type><title>Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations</title><source>Springer Nature</source><creator>Fouladi, Somayeh ; Mokhtari, Reza ; Dahaghin, Mohammad Shafi</creator><creatorcontrib>Fouladi, Somayeh ; Mokhtari, Reza ; Dahaghin, Mohammad Shafi</creatorcontrib><description>We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also reduced. We are particularly interested in improving the computational efficiency in comparison to the original schemes, aiming to preserve the properties of the LDG method. We also deal with the method’s stability and convergence analyses and discuss its computational time. Finally, some numerical simulations are carried out to confirm the theoretical results.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-022-01347-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computational efficiency ; Computer Science ; Computing time ; Convection-diffusion equation ; Decomposition ; Galerkin method ; Mathematical analysis ; Methods ; Numeric Computing ; Numerical Analysis ; Original Paper ; Partial differential equations ; Splitting ; Stability analysis ; Theory of Computation</subject><ispartof>Numerical algorithms, 2023-02, Vol.92 (2), p.1425-1449</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313</citedby><cites>FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313</cites><orcidid>0000-0003-3643-1892 ; 0000-0002-1420-0949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fouladi, Somayeh</creatorcontrib><creatorcontrib>Mokhtari, Reza</creatorcontrib><creatorcontrib>Dahaghin, Mohammad Shafi</creatorcontrib><title>Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also reduced. We are particularly interested in improving the computational efficiency in comparison to the original schemes, aiming to preserve the properties of the LDG method. We also deal with the method’s stability and convergence analyses and discuss its computational time. Finally, some numerical simulations are carried out to confirm the theoretical results.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computational efficiency</subject><subject>Computer Science</subject><subject>Computing time</subject><subject>Convection-diffusion equation</subject><subject>Decomposition</subject><subject>Galerkin method</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Splitting</subject><subject>Stability analysis</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAURYnRxHH0D7gicY0C5aNdmolfySSz0TVhKIyMbekANfHfy1gTd64g993z8nIAuCb4lmAs7xIhWHKEKUWYVEwiegIWhEuKGir4afljIhGpmvocXKS0x7hgVC5A3Iw26hwiSmPnc_bDDnbB6A62PpkwlGAKU4JPurPxww-wt_k9tNCFCPupyx61vrdD8mEoTOcHqyMs3Kc1uWRl6tx0nEJ7mPQxSpfgzOku2avfdwneHh9eV89ovXl6Wd2vkaGsyeXwijNZN1wLLI1w1lHDaqOZwQ3ZWq6paFottowSih1xeMuFkC2TojWOVaRagpt57xjDYbIpq32YYjkzKdqQmteySCktOrdMDClF69QYfa_jlyJYHd2q2a0qbtWPW0ULVM1QKuVhZ-Pf6n-ob8-dfws</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Fouladi, Somayeh</creator><creator>Mokhtari, Reza</creator><creator>Dahaghin, Mohammad Shafi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3643-1892</orcidid><orcidid>https://orcid.org/0000-0002-1420-0949</orcidid></search><sort><creationdate>20230201</creationdate><title>Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations</title><author>Fouladi, Somayeh ; Mokhtari, Reza ; Dahaghin, Mohammad Shafi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computational efficiency</topic><topic>Computer Science</topic><topic>Computing time</topic><topic>Convection-diffusion equation</topic><topic>Decomposition</topic><topic>Galerkin method</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Splitting</topic><topic>Stability analysis</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fouladi, Somayeh</creatorcontrib><creatorcontrib>Mokhtari, Reza</creatorcontrib><creatorcontrib>Dahaghin, Mohammad Shafi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fouladi, Somayeh</au><au>Mokhtari, Reza</au><au>Dahaghin, Mohammad Shafi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>92</volume><issue>2</issue><spage>1425</spage><epage>1449</epage><pages>1425-1449</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also reduced. We are particularly interested in improving the computational efficiency in comparison to the original schemes, aiming to preserve the properties of the LDG method. We also deal with the method’s stability and convergence analyses and discuss its computational time. Finally, some numerical simulations are carried out to confirm the theoretical results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-022-01347-2</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-3643-1892</orcidid><orcidid>https://orcid.org/0000-0002-1420-0949</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2023-02, Vol.92 (2), p.1425-1449
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918587101
source Springer Nature
subjects Algebra
Algorithms
Computational efficiency
Computer Science
Computing time
Convection-diffusion equation
Decomposition
Galerkin method
Mathematical analysis
Methods
Numeric Computing
Numerical Analysis
Original Paper
Partial differential equations
Splitting
Stability analysis
Theory of Computation
title Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operator-splitting%20local%20discontinuous%20Galerkin%20method%20for%20multi-dimensional%20linear%20convection-diffusion%20equations&rft.jtitle=Numerical%20algorithms&rft.au=Fouladi,%20Somayeh&rft.date=2023-02-01&rft.volume=92&rft.issue=2&rft.spage=1425&rft.epage=1449&rft.pages=1425-1449&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-022-01347-2&rft_dat=%3Cproquest_cross%3E2918587101%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-923547895a607c6fef2c48ca4c091be5a269da6b42120f1f0b5667d476dcf4313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918587101&rft_id=info:pmid/&rfr_iscdi=true