Loading…
Probabilistic generalization of formal concepts
An inductive probabilistic approach to formal concept analysis (FCA) is proposed in which probability on formal contexts is considered; probabilistic formal concepts that have predictive force are defined: nonclassified objects can be assigned to earlier found probabilistic formal concepts; random a...
Saved in:
Published in: | Programming and computer software 2012-09, Vol.38 (5), p.219-230 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793 |
container_end_page | 230 |
container_issue | 5 |
container_start_page | 219 |
container_title | Programming and computer software |
container_volume | 38 |
creator | Vityaev, E. E. Demin, A. V. Ponomaryov, D. K. |
description | An inductive probabilistic approach to formal concept analysis (FCA) is proposed in which probability on formal contexts is considered; probabilistic formal concepts that have predictive force are defined: nonclassified objects can be assigned to earlier found probabilistic formal concepts; random attributes are eliminated from probabilistic formal concepts; probabilistic formal concepts are robust with respect to data noise. A result of experiment is presented in which formal concepts (in their standard definition in FCA) are first distorted by random noise and then recovered by detecting probabilistic formal concepts. |
doi_str_mv | 10.1134/S0361768812050076 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918591796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918591796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Fz3VnmjZNjrKoKywoqOeSpJOlS7epSfegv96WCh7E0xze972Bx9g1wi0iz1evwAWWQkrMoAAoxQlboACZ8kzgKVtMcTrl5-wixj0AAuT5gq1egjfaNG0Th8YmO-oo6Lb50kPju8S7xPlw0G1ifWepH-IlO3O6jXT1c5fs_eH-bb1Jt8-PT-u7bWo5iiFVHKUhVWviYNEKbsqanBQlAYHgtURhioKrDI0jyVUtucuF1DVRYepS8SW7mXv74D-OFIdq74-hG19WmUJZKCyVGCmcKRt8jIFc1YfmoMNnhVBNu1R_dhmdbHbiyHY7Cr_N_0vfDNJj1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918591796</pqid></control><display><type>article</type><title>Probabilistic generalization of formal concepts</title><source>Springer Link</source><creator>Vityaev, E. E. ; Demin, A. V. ; Ponomaryov, D. K.</creator><creatorcontrib>Vityaev, E. E. ; Demin, A. V. ; Ponomaryov, D. K.</creatorcontrib><description>An inductive probabilistic approach to formal concept analysis (FCA) is proposed in which probability on formal contexts is considered; probabilistic formal concepts that have predictive force are defined: nonclassified objects can be assigned to earlier found probabilistic formal concepts; random attributes are eliminated from probabilistic formal concepts; probabilistic formal concepts are robust with respect to data noise. A result of experiment is presented in which formal concepts (in their standard definition in FCA) are first distorted by random noise and then recovered by detecting probabilistic formal concepts.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768812050076</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Artificial Intelligence ; Computer Science ; Operating Systems ; Random noise ; Software Engineering ; Software Engineering/Programming and Operating Systems ; Statistical analysis</subject><ispartof>Programming and computer software, 2012-09, Vol.38 (5), p.219-230</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><rights>Pleiades Publishing, Ltd. 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793</citedby><cites>FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vityaev, E. E.</creatorcontrib><creatorcontrib>Demin, A. V.</creatorcontrib><creatorcontrib>Ponomaryov, D. K.</creatorcontrib><title>Probabilistic generalization of formal concepts</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>An inductive probabilistic approach to formal concept analysis (FCA) is proposed in which probability on formal contexts is considered; probabilistic formal concepts that have predictive force are defined: nonclassified objects can be assigned to earlier found probabilistic formal concepts; random attributes are eliminated from probabilistic formal concepts; probabilistic formal concepts are robust with respect to data noise. A result of experiment is presented in which formal concepts (in their standard definition in FCA) are first distorted by random noise and then recovered by detecting probabilistic formal concepts.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Operating Systems</subject><subject>Random noise</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Statistical analysis</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Fz3VnmjZNjrKoKywoqOeSpJOlS7epSfegv96WCh7E0xze972Bx9g1wi0iz1evwAWWQkrMoAAoxQlboACZ8kzgKVtMcTrl5-wixj0AAuT5gq1egjfaNG0Th8YmO-oo6Lb50kPju8S7xPlw0G1ifWepH-IlO3O6jXT1c5fs_eH-bb1Jt8-PT-u7bWo5iiFVHKUhVWviYNEKbsqanBQlAYHgtURhioKrDI0jyVUtucuF1DVRYepS8SW7mXv74D-OFIdq74-hG19WmUJZKCyVGCmcKRt8jIFc1YfmoMNnhVBNu1R_dhmdbHbiyHY7Cr_N_0vfDNJj1A</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Vityaev, E. E.</creator><creator>Demin, A. V.</creator><creator>Ponomaryov, D. K.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20120901</creationdate><title>Probabilistic generalization of formal concepts</title><author>Vityaev, E. E. ; Demin, A. V. ; Ponomaryov, D. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Operating Systems</topic><topic>Random noise</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vityaev, E. E.</creatorcontrib><creatorcontrib>Demin, A. V.</creatorcontrib><creatorcontrib>Ponomaryov, D. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vityaev, E. E.</au><au>Demin, A. V.</au><au>Ponomaryov, D. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic generalization of formal concepts</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>38</volume><issue>5</issue><spage>219</spage><epage>230</epage><pages>219-230</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>An inductive probabilistic approach to formal concept analysis (FCA) is proposed in which probability on formal contexts is considered; probabilistic formal concepts that have predictive force are defined: nonclassified objects can be assigned to earlier found probabilistic formal concepts; random attributes are eliminated from probabilistic formal concepts; probabilistic formal concepts are robust with respect to data noise. A result of experiment is presented in which formal concepts (in their standard definition in FCA) are first distorted by random noise and then recovered by detecting probabilistic formal concepts.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0361768812050076</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-7688 |
ispartof | Programming and computer software, 2012-09, Vol.38 (5), p.219-230 |
issn | 0361-7688 1608-3261 |
language | eng |
recordid | cdi_proquest_journals_2918591796 |
source | Springer Link |
subjects | Artificial Intelligence Computer Science Operating Systems Random noise Software Engineering Software Engineering/Programming and Operating Systems Statistical analysis |
title | Probabilistic generalization of formal concepts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20generalization%20of%20formal%20concepts&rft.jtitle=Programming%20and%20computer%20software&rft.au=Vityaev,%20E.%20E.&rft.date=2012-09-01&rft.volume=38&rft.issue=5&rft.spage=219&rft.epage=230&rft.pages=219-230&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768812050076&rft_dat=%3Cproquest_cross%3E2918591796%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918591796&rft_id=info:pmid/&rfr_iscdi=true |