Loading…

Probabilistic generalization of formal concepts

An inductive probabilistic approach to formal concept analysis (FCA) is proposed in which probability on formal contexts is considered; probabilistic formal concepts that have predictive force are defined: nonclassified objects can be assigned to earlier found probabilistic formal concepts; random a...

Full description

Saved in:
Bibliographic Details
Published in:Programming and computer software 2012-09, Vol.38 (5), p.219-230
Main Authors: Vityaev, E. E., Demin, A. V., Ponomaryov, D. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793
cites cdi_FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793
container_end_page 230
container_issue 5
container_start_page 219
container_title Programming and computer software
container_volume 38
creator Vityaev, E. E.
Demin, A. V.
Ponomaryov, D. K.
description An inductive probabilistic approach to formal concept analysis (FCA) is proposed in which probability on formal contexts is considered; probabilistic formal concepts that have predictive force are defined: nonclassified objects can be assigned to earlier found probabilistic formal concepts; random attributes are eliminated from probabilistic formal concepts; probabilistic formal concepts are robust with respect to data noise. A result of experiment is presented in which formal concepts (in their standard definition in FCA) are first distorted by random noise and then recovered by detecting probabilistic formal concepts.
doi_str_mv 10.1134/S0361768812050076
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918591796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918591796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Fz3VnmjZNjrKoKywoqOeSpJOlS7epSfegv96WCh7E0xze972Bx9g1wi0iz1evwAWWQkrMoAAoxQlboACZ8kzgKVtMcTrl5-wixj0AAuT5gq1egjfaNG0Th8YmO-oo6Lb50kPju8S7xPlw0G1ifWepH-IlO3O6jXT1c5fs_eH-bb1Jt8-PT-u7bWo5iiFVHKUhVWviYNEKbsqanBQlAYHgtURhioKrDI0jyVUtucuF1DVRYepS8SW7mXv74D-OFIdq74-hG19WmUJZKCyVGCmcKRt8jIFc1YfmoMNnhVBNu1R_dhmdbHbiyHY7Cr_N_0vfDNJj1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918591796</pqid></control><display><type>article</type><title>Probabilistic generalization of formal concepts</title><source>Springer Link</source><creator>Vityaev, E. E. ; Demin, A. V. ; Ponomaryov, D. K.</creator><creatorcontrib>Vityaev, E. E. ; Demin, A. V. ; Ponomaryov, D. K.</creatorcontrib><description>An inductive probabilistic approach to formal concept analysis (FCA) is proposed in which probability on formal contexts is considered; probabilistic formal concepts that have predictive force are defined: nonclassified objects can be assigned to earlier found probabilistic formal concepts; random attributes are eliminated from probabilistic formal concepts; probabilistic formal concepts are robust with respect to data noise. A result of experiment is presented in which formal concepts (in their standard definition in FCA) are first distorted by random noise and then recovered by detecting probabilistic formal concepts.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768812050076</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Artificial Intelligence ; Computer Science ; Operating Systems ; Random noise ; Software Engineering ; Software Engineering/Programming and Operating Systems ; Statistical analysis</subject><ispartof>Programming and computer software, 2012-09, Vol.38 (5), p.219-230</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><rights>Pleiades Publishing, Ltd. 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793</citedby><cites>FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vityaev, E. E.</creatorcontrib><creatorcontrib>Demin, A. V.</creatorcontrib><creatorcontrib>Ponomaryov, D. K.</creatorcontrib><title>Probabilistic generalization of formal concepts</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>An inductive probabilistic approach to formal concept analysis (FCA) is proposed in which probability on formal contexts is considered; probabilistic formal concepts that have predictive force are defined: nonclassified objects can be assigned to earlier found probabilistic formal concepts; random attributes are eliminated from probabilistic formal concepts; probabilistic formal concepts are robust with respect to data noise. A result of experiment is presented in which formal concepts (in their standard definition in FCA) are first distorted by random noise and then recovered by detecting probabilistic formal concepts.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Operating Systems</subject><subject>Random noise</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Statistical analysis</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Fz3VnmjZNjrKoKywoqOeSpJOlS7epSfegv96WCh7E0xze972Bx9g1wi0iz1evwAWWQkrMoAAoxQlboACZ8kzgKVtMcTrl5-wixj0AAuT5gq1egjfaNG0Th8YmO-oo6Lb50kPju8S7xPlw0G1ifWepH-IlO3O6jXT1c5fs_eH-bb1Jt8-PT-u7bWo5iiFVHKUhVWviYNEKbsqanBQlAYHgtURhioKrDI0jyVUtucuF1DVRYepS8SW7mXv74D-OFIdq74-hG19WmUJZKCyVGCmcKRt8jIFc1YfmoMNnhVBNu1R_dhmdbHbiyHY7Cr_N_0vfDNJj1A</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Vityaev, E. E.</creator><creator>Demin, A. V.</creator><creator>Ponomaryov, D. K.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20120901</creationdate><title>Probabilistic generalization of formal concepts</title><author>Vityaev, E. E. ; Demin, A. V. ; Ponomaryov, D. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Operating Systems</topic><topic>Random noise</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vityaev, E. E.</creatorcontrib><creatorcontrib>Demin, A. V.</creatorcontrib><creatorcontrib>Ponomaryov, D. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vityaev, E. E.</au><au>Demin, A. V.</au><au>Ponomaryov, D. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic generalization of formal concepts</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>38</volume><issue>5</issue><spage>219</spage><epage>230</epage><pages>219-230</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>An inductive probabilistic approach to formal concept analysis (FCA) is proposed in which probability on formal contexts is considered; probabilistic formal concepts that have predictive force are defined: nonclassified objects can be assigned to earlier found probabilistic formal concepts; random attributes are eliminated from probabilistic formal concepts; probabilistic formal concepts are robust with respect to data noise. A result of experiment is presented in which formal concepts (in their standard definition in FCA) are first distorted by random noise and then recovered by detecting probabilistic formal concepts.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0361768812050076</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-7688
ispartof Programming and computer software, 2012-09, Vol.38 (5), p.219-230
issn 0361-7688
1608-3261
language eng
recordid cdi_proquest_journals_2918591796
source Springer Link
subjects Artificial Intelligence
Computer Science
Operating Systems
Random noise
Software Engineering
Software Engineering/Programming and Operating Systems
Statistical analysis
title Probabilistic generalization of formal concepts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20generalization%20of%20formal%20concepts&rft.jtitle=Programming%20and%20computer%20software&rft.au=Vityaev,%20E.%20E.&rft.date=2012-09-01&rft.volume=38&rft.issue=5&rft.spage=219&rft.epage=230&rft.pages=219-230&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768812050076&rft_dat=%3Cproquest_cross%3E2918591796%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-9318be9dae30c1c63b7def867e0e063d816b553921bfe839d83f468adee5bd793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918591796&rft_id=info:pmid/&rfr_iscdi=true