Loading…
Implications for the supermassive black hole binaries from the NANOGrav 15-year data set
Several pulsar timing array (PTA) collaborations, including NANOGrav, EPTA, PPTA, and CPTA, have announced the evidence for a stochastic signal consistent with a stochastic gravitational wave background (SGWB). Supermassive black hole binaries (SMBHBs) are supposed to be the most promising gravitati...
Saved in:
Published in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2023-12, Vol.66 (12), p.120402, Article 120402 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Several pulsar timing array (PTA) collaborations, including NANOGrav, EPTA, PPTA, and CPTA, have announced the evidence for a stochastic signal consistent with a stochastic gravitational wave background (SGWB). Supermassive black hole binaries (SMBHBs) are supposed to be the most promising gravitational-wave (GW) sources for this signal. In this paper, we use the NANOGrav 15-year data set to constrain the parameter space in an astro-informed formation model for SMBHBs. Our results prefer a large turn-over eccentricity of the SMBHB orbit when GWs begin to dominate the SMBHB evolution. Furthermore, the SGWB spectrum is extrapolated to the space-borne GW detector frequency band by including inspiral-merge-cutoff phases of SMBHBs, indicating that the SGWB from SMBHBs should be detected by LISA, Taiji and TianQin in the near future. |
---|---|
ISSN: | 1674-7348 1869-1927 |
DOI: | 10.1007/s11433-023-2252-4 |