Loading…

Quantum tunneling of ultracold atoms in optical traps

We review our theoretical advances in quantum tunneling of BoseEinstein condensates in optical traps and in microcavities. By employing a real physical system, the frequencies of the pseudo Goldstone modes in different phases between two optical traps are studied respectivdy, which are tile crucial...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of physics 2014-04, Vol.9 (2), p.137-152
Main Authors: Wu, Jian-Hua, Qi, Ran, Ji, An-Chun, Liu, Wu-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We review our theoretical advances in quantum tunneling of BoseEinstein condensates in optical traps and in microcavities. By employing a real physical system, the frequencies of the pseudo Goldstone modes in different phases between two optical traps are studied respectivdy, which are tile crucial feature of the non-Abelian Joseptmon effect. When the optical lattices are under gravity, we investigate the quantum tummling in the "Wannier-Stark localization" regime and "Lan(lau Zener tunneling" regime. We finally get the total decay rate and the rate is valid over the entire range of temperatures. At high temperatures, we show how the decay rate reduces to the appropriate results for the classical thermal activation. At hltermediate temperatures, the results of tile total decay rate are consistent with the thermally assisted tunneling. At low temperatures, we obtain the pure quantmn tunneling ultimately. And we study the alternating-current and direct-current (ac and de) photonic 3osephson effects in two weakly linked microcavities containing ultracold two-level atones, which allows for direct observation of the effects. This enables new investigations of the effect of maw-body physics in strongly coupled atom-cavity systems and provides a strategy for constructing novel interference devices of coherent photons. In addition, we propose the experimental protocols to observe these quantmn tunneling of Bose- Einstein condensates.
ISSN:2095-0462
2095-0470
DOI:10.1007/s11467-013-0359-z