Loading…
Preserving qubit coherence by dynamical decoupling
In quantum information processing, it is vital to protect the coherence of qubits in noisy environments. Dynamical decoupling (DD), which applies a sequence of flips on qubits and averages the qubit-environment coupling to zero, is a promising strategy compatible with other desired functionalities,...
Saved in:
Published in: | Frontiers of physics 2011-03, Vol.6 (1), p.2-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In quantum information processing, it is vital to protect the coherence of qubits in noisy environments. Dynamical decoupling (DD), which applies a sequence of flips on qubits and averages the qubit-environment coupling to zero, is a promising strategy compatible with other desired functionalities, such as quantum gates. Here, we review the recent progresses in theories of dynamical decoupling and experimental demonstrations. We give both semiclassical and quantum descriptions of the qubit decoherence due to coupling to noisy environments. Based on the quantum picture, a geometrical interpretation of DD is presented. The periodic Carr-Purcell-Meiboom-Gill DD and the concatenated DD are reviewed, followed by a detailed exploration of the recently developed Uhrig DD, which employs the least number of pulses in an unequally spaced sequence to suppress the qubit-environment coupling to a given order of the evolution time. Some new developments and perspectives are also discussed. |
---|---|
ISSN: | 2095-0462 2095-0470 |
DOI: | 10.1007/s11467-010-0113-8 |