Loading…

Markov chain Monte Carlo based video tracking algorithm

The paper considers a problem of multiple person tracking. We present the algorithm to automatic people tracking on surveillance videos recorded by static cameras. Proposed algorithm is an extension of approach based on tracking-by-detection of people heads and data association using Markov chain Mo...

Full description

Saved in:
Bibliographic Details
Published in:Programming and computer software 2017-07, Vol.43 (4), p.224-229
Main Authors: Kuplyakov, D., Shalnov, E., Konushin, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper considers a problem of multiple person tracking. We present the algorithm to automatic people tracking on surveillance videos recorded by static cameras. Proposed algorithm is an extension of approach based on tracking-by-detection of people heads and data association using Markov chain Monte Carlo (MCMC). Short track fragments (tracklets) are built by local tracking of people heads. Tracklet postprocessing and accurate results interpolation were shown to reduce number of false positives. We use position deviations of tracklets and revised entry/exit points factor to separate pedestrians from false positives. The paper presents a new method to estimate body position, that increases precision of tracker. Finally, we switched HOG-based detector to cascade one. Our evaluation shows proposed modifications significantly increase tracking quality.
ISSN:0361-7688
1608-3261
DOI:10.1134/S0361768817040053