Loading…
Controllable electromagnetically induced grating in a cascade-type atomic system
A controllable electromagnetically induced grating (EIG) is experimentally realized in a coherent rubidium ensemble with 5 S 1/2-5 P 3/2-5 D 5/2 cascade configuration. In our work, a whole picture describing the relation between the first-order diffraction efficiency and the power of the coupling fi...
Saved in:
Published in: | Frontiers of physics 2019-10, Vol.14 (5), p.52603, Article 52603 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-1829c08c75dea5e1e4c5ff354178f139899e28d73aac0372827deebdc1ac784e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-1829c08c75dea5e1e4c5ff354178f139899e28d73aac0372827deebdc1ac784e3 |
container_end_page | |
container_issue | 5 |
container_start_page | 52603 |
container_title | Frontiers of physics |
container_volume | 14 |
creator | Yuan, Jin-Peng Wu, Chao-Hua Li, Yi-Hong Wang, Li-Rong Zhang, Yun Xiao, Lian-Tuan Jia, Suo-Tang |
description | A controllable electromagnetically induced grating (EIG) is experimentally realized in a coherent rubidium ensemble with 5 S 1/2-5 P 3/2-5 D 5/2 cascade configuration. In our work, a whole picture describing the relation between the first-order diffraction efficiency and the power of the coupling field is experimentally presented for the first time, which agrees well with the theoretical prediction. More important, by fine tuning the experimental parameters, the first-order diffraction efficiency of as high as 25% can be achieved and a clear three-order diffraction pattern is also observed. Such a controllable periodic structure can provide a powerful tool for studying the control of light dynamics, pave the way for realizing new optical device. |
doi_str_mv | 10.1007/s11467-019-0924-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918609695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918609695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-1829c08c75dea5e1e4c5ff354178f139899e28d73aac0372827deebdc1ac784e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGp_gLcFz9FM9iPJUYpfUNCDnkOazG637EdN0sP-e1NW9NbTzAvvMwMPIbfA7oEx8RAAikpQBooyxQsKF2TBmSopKwS7_Nsrfk1WIewZYwCiSHlBPtbjEP3YdWbbYYYd2pR60wwYW2u6bsrawR0tuqzxJrZDk3JmMmuCNQ5pnA6YmTj2rc3CFCL2N-SqNl3A1e9ckq_np8_1K928v7ytHzfU5lUZKUiuLJNWlA5NiYCFLes6LwsQsoZcSaWQSydyYyzLBZdcOMSts2CskAXmS3I33z348fuIIer9ePRDeqm5AlkxVakytWBuWT-G4LHWB9_2xk8amD6507M7ndzpkzsNieEzE1J3aND_Xz4HyRnatc0OPbqDxxB07ZPeFv059AcwlYQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918609695</pqid></control><display><type>article</type><title>Controllable electromagnetically induced grating in a cascade-type atomic system</title><source>Springer Nature</source><creator>Yuan, Jin-Peng ; Wu, Chao-Hua ; Li, Yi-Hong ; Wang, Li-Rong ; Zhang, Yun ; Xiao, Lian-Tuan ; Jia, Suo-Tang</creator><creatorcontrib>Yuan, Jin-Peng ; Wu, Chao-Hua ; Li, Yi-Hong ; Wang, Li-Rong ; Zhang, Yun ; Xiao, Lian-Tuan ; Jia, Suo-Tang</creatorcontrib><description>A controllable electromagnetically induced grating (EIG) is experimentally realized in a coherent rubidium ensemble with 5 S 1/2-5 P 3/2-5 D 5/2 cascade configuration. In our work, a whole picture describing the relation between the first-order diffraction efficiency and the power of the coupling field is experimentally presented for the first time, which agrees well with the theoretical prediction. More important, by fine tuning the experimental parameters, the first-order diffraction efficiency of as high as 25% can be achieved and a clear three-order diffraction pattern is also observed. Such a controllable periodic structure can provide a powerful tool for studying the control of light dynamics, pave the way for realizing new optical device.</description><identifier>ISSN: 2095-0462</identifier><identifier>EISSN: 2095-0470</identifier><identifier>DOI: 10.1007/s11467-019-0924-1</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Atomic ; coherent optical effects ; Condensed Matter Physics ; Controllability ; Diffraction efficiency ; diffraction gratings ; Diffraction patterns ; Efficiency ; Lasers ; Molecular ; multiphoton processes ; Optical and Plasma Physics ; Optics ; Particle and Nuclear Physics ; Periodic structures ; Physics ; Physics and Astronomy ; Power ; Propagation ; Research Article ; Rubidium ; Semiconductors ; Spectrum analysis</subject><ispartof>Frontiers of physics, 2019-10, Vol.14 (5), p.52603, Article 52603</ispartof><rights>Copyright reserved, 2019, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature</rights><rights>Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-1829c08c75dea5e1e4c5ff354178f139899e28d73aac0372827deebdc1ac784e3</citedby><cites>FETCH-LOGICAL-c365t-1829c08c75dea5e1e4c5ff354178f139899e28d73aac0372827deebdc1ac784e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuan, Jin-Peng</creatorcontrib><creatorcontrib>Wu, Chao-Hua</creatorcontrib><creatorcontrib>Li, Yi-Hong</creatorcontrib><creatorcontrib>Wang, Li-Rong</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Xiao, Lian-Tuan</creatorcontrib><creatorcontrib>Jia, Suo-Tang</creatorcontrib><title>Controllable electromagnetically induced grating in a cascade-type atomic system</title><title>Frontiers of physics</title><addtitle>Front. Phys</addtitle><description>A controllable electromagnetically induced grating (EIG) is experimentally realized in a coherent rubidium ensemble with 5 S 1/2-5 P 3/2-5 D 5/2 cascade configuration. In our work, a whole picture describing the relation between the first-order diffraction efficiency and the power of the coupling field is experimentally presented for the first time, which agrees well with the theoretical prediction. More important, by fine tuning the experimental parameters, the first-order diffraction efficiency of as high as 25% can be achieved and a clear three-order diffraction pattern is also observed. Such a controllable periodic structure can provide a powerful tool for studying the control of light dynamics, pave the way for realizing new optical device.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Atomic</subject><subject>coherent optical effects</subject><subject>Condensed Matter Physics</subject><subject>Controllability</subject><subject>Diffraction efficiency</subject><subject>diffraction gratings</subject><subject>Diffraction patterns</subject><subject>Efficiency</subject><subject>Lasers</subject><subject>Molecular</subject><subject>multiphoton processes</subject><subject>Optical and Plasma Physics</subject><subject>Optics</subject><subject>Particle and Nuclear Physics</subject><subject>Periodic structures</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power</subject><subject>Propagation</subject><subject>Research Article</subject><subject>Rubidium</subject><subject>Semiconductors</subject><subject>Spectrum analysis</subject><issn>2095-0462</issn><issn>2095-0470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGp_gLcFz9FM9iPJUYpfUNCDnkOazG637EdN0sP-e1NW9NbTzAvvMwMPIbfA7oEx8RAAikpQBooyxQsKF2TBmSopKwS7_Nsrfk1WIewZYwCiSHlBPtbjEP3YdWbbYYYd2pR60wwYW2u6bsrawR0tuqzxJrZDk3JmMmuCNQ5pnA6YmTj2rc3CFCL2N-SqNl3A1e9ckq_np8_1K928v7ytHzfU5lUZKUiuLJNWlA5NiYCFLes6LwsQsoZcSaWQSydyYyzLBZdcOMSts2CskAXmS3I33z348fuIIer9ePRDeqm5AlkxVakytWBuWT-G4LHWB9_2xk8amD6507M7ndzpkzsNieEzE1J3aND_Xz4HyRnatc0OPbqDxxB07ZPeFv059AcwlYQI</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Yuan, Jin-Peng</creator><creator>Wu, Chao-Hua</creator><creator>Li, Yi-Hong</creator><creator>Wang, Li-Rong</creator><creator>Zhang, Yun</creator><creator>Xiao, Lian-Tuan</creator><creator>Jia, Suo-Tang</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20191001</creationdate><title>Controllable electromagnetically induced grating in a cascade-type atomic system</title><author>Yuan, Jin-Peng ; Wu, Chao-Hua ; Li, Yi-Hong ; Wang, Li-Rong ; Zhang, Yun ; Xiao, Lian-Tuan ; Jia, Suo-Tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-1829c08c75dea5e1e4c5ff354178f139899e28d73aac0372827deebdc1ac784e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Atomic</topic><topic>coherent optical effects</topic><topic>Condensed Matter Physics</topic><topic>Controllability</topic><topic>Diffraction efficiency</topic><topic>diffraction gratings</topic><topic>Diffraction patterns</topic><topic>Efficiency</topic><topic>Lasers</topic><topic>Molecular</topic><topic>multiphoton processes</topic><topic>Optical and Plasma Physics</topic><topic>Optics</topic><topic>Particle and Nuclear Physics</topic><topic>Periodic structures</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power</topic><topic>Propagation</topic><topic>Research Article</topic><topic>Rubidium</topic><topic>Semiconductors</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Jin-Peng</creatorcontrib><creatorcontrib>Wu, Chao-Hua</creatorcontrib><creatorcontrib>Li, Yi-Hong</creatorcontrib><creatorcontrib>Wang, Li-Rong</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Xiao, Lian-Tuan</creatorcontrib><creatorcontrib>Jia, Suo-Tang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Frontiers of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Jin-Peng</au><au>Wu, Chao-Hua</au><au>Li, Yi-Hong</au><au>Wang, Li-Rong</au><au>Zhang, Yun</au><au>Xiao, Lian-Tuan</au><au>Jia, Suo-Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable electromagnetically induced grating in a cascade-type atomic system</atitle><jtitle>Frontiers of physics</jtitle><stitle>Front. Phys</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><spage>52603</spage><pages>52603-</pages><artnum>52603</artnum><issn>2095-0462</issn><eissn>2095-0470</eissn><abstract>A controllable electromagnetically induced grating (EIG) is experimentally realized in a coherent rubidium ensemble with 5 S 1/2-5 P 3/2-5 D 5/2 cascade configuration. In our work, a whole picture describing the relation between the first-order diffraction efficiency and the power of the coupling field is experimentally presented for the first time, which agrees well with the theoretical prediction. More important, by fine tuning the experimental parameters, the first-order diffraction efficiency of as high as 25% can be achieved and a clear three-order diffraction pattern is also observed. Such a controllable periodic structure can provide a powerful tool for studying the control of light dynamics, pave the way for realizing new optical device.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11467-019-0924-1</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-0462 |
ispartof | Frontiers of physics, 2019-10, Vol.14 (5), p.52603, Article 52603 |
issn | 2095-0462 2095-0470 |
language | eng |
recordid | cdi_proquest_journals_2918609695 |
source | Springer Nature |
subjects | Astronomy Astrophysics and Cosmology Atomic coherent optical effects Condensed Matter Physics Controllability Diffraction efficiency diffraction gratings Diffraction patterns Efficiency Lasers Molecular multiphoton processes Optical and Plasma Physics Optics Particle and Nuclear Physics Periodic structures Physics Physics and Astronomy Power Propagation Research Article Rubidium Semiconductors Spectrum analysis |
title | Controllable electromagnetically induced grating in a cascade-type atomic system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20electromagnetically%20induced%20grating%20in%20a%20cascade-type%20atomic%20system&rft.jtitle=Frontiers%20of%20physics&rft.au=Yuan,%20Jin-Peng&rft.date=2019-10-01&rft.volume=14&rft.issue=5&rft.spage=52603&rft.pages=52603-&rft.artnum=52603&rft.issn=2095-0462&rft.eissn=2095-0470&rft_id=info:doi/10.1007/s11467-019-0924-1&rft_dat=%3Cproquest_cross%3E2918609695%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-1829c08c75dea5e1e4c5ff354178f139899e28d73aac0372827deebdc1ac784e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918609695&rft_id=info:pmid/&rfr_iscdi=true |