Loading…

Accurate error estimation in CG

In practical computations, the (preconditioned) conjugate gradient (P)CG method is the iterative method of choice for solving systems of linear algebraic equations A x = b with a real symmetric positive definite matrix A . During the iterations, it is important to monitor the quality of the approxim...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms 2021-11, Vol.88 (3), p.1337-1359
Main Authors: Meurant, Gérard, Papež, Jan, Tichý, Petr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-8dddeefa9b45263e928b1c8424abf6b702fc83e7a5b7b9c5325447134eb86b1f3
cites cdi_FETCH-LOGICAL-c319t-8dddeefa9b45263e928b1c8424abf6b702fc83e7a5b7b9c5325447134eb86b1f3
container_end_page 1359
container_issue 3
container_start_page 1337
container_title Numerical algorithms
container_volume 88
creator Meurant, Gérard
Papež, Jan
Tichý, Petr
description In practical computations, the (preconditioned) conjugate gradient (P)CG method is the iterative method of choice for solving systems of linear algebraic equations A x = b with a real symmetric positive definite matrix A . During the iterations, it is important to monitor the quality of the approximate solution x k so that the process could be stopped whenever x k is accurate enough. One of the most relevant quantities for monitoring the quality of x k is the squared A -norm of the error vector x − x k . This quantity cannot be easily evaluated; however, it can be estimated. Many of the existing estimation techniques are inspired by the view of CG as a procedure for approximating a certain Riemann–Stieltjes integral. The most natural technique is based on the Gauss quadrature approximation and provides a lower bound on the quantity of interest. The bound can be cheaply evaluated using terms that have to be computed anyway in the forthcoming CG iterations. If the squared A -norm of the error vector decreases rapidly, then the lower bound represents a tight estimate. In this paper, we suggest a heuristic strategy aiming to answer the question of how many forthcoming CG iterations are needed to get an estimate with the prescribed accuracy. Numerical experiments demonstrate that the suggested strategy is efficient and robust.
doi_str_mv 10.1007/s11075-021-01078-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918610119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918610119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8dddeefa9b45263e928b1c8424abf6b702fc83e7a5b7b9c5325447134eb86b1f3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AS8WPEfz8qdJjkvRVVjYy3oOSZpIF23XpGXx2xut4M3Tm8PMvOGH0DWQOyBE3mcAIgUmFDApSuHjCVqAkBRrWovToglIDEyrc3SR854UF6FygW5W3k_JjqEKKQ2pCnns3u3YDX3V9VWzvkRn0b7lcPV7l-jl8WHXPOHNdv3crDbYM9AjVm3bhhCtdlzQmgVNlQOvOOXWxdpJQqNXLEgrnHTaC0YF5xIYD07VDiJbotu595CGj6msMPthSn15aagGVZf9oIuLzi6fhpxTiOaQytz0aYCYbxBmBmEKCPMDwhxLiM2hXMz9a0h_1f-kvgAjtl9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918610119</pqid></control><display><type>article</type><title>Accurate error estimation in CG</title><source>Springer Nature</source><creator>Meurant, Gérard ; Papež, Jan ; Tichý, Petr</creator><creatorcontrib>Meurant, Gérard ; Papež, Jan ; Tichý, Petr</creatorcontrib><description>In practical computations, the (preconditioned) conjugate gradient (P)CG method is the iterative method of choice for solving systems of linear algebraic equations A x = b with a real symmetric positive definite matrix A . During the iterations, it is important to monitor the quality of the approximate solution x k so that the process could be stopped whenever x k is accurate enough. One of the most relevant quantities for monitoring the quality of x k is the squared A -norm of the error vector x − x k . This quantity cannot be easily evaluated; however, it can be estimated. Many of the existing estimation techniques are inspired by the view of CG as a procedure for approximating a certain Riemann–Stieltjes integral. The most natural technique is based on the Gauss quadrature approximation and provides a lower bound on the quantity of interest. The bound can be cheaply evaluated using terms that have to be computed anyway in the forthcoming CG iterations. If the squared A -norm of the error vector decreases rapidly, then the lower bound represents a tight estimate. In this paper, we suggest a heuristic strategy aiming to answer the question of how many forthcoming CG iterations are needed to get an estimate with the prescribed accuracy. Numerical experiments demonstrate that the suggested strategy is efficient and robust.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-021-01078-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algebra ; Algorithms ; Approximation ; Computer Science ; Eigenvalues ; Errors ; Iterative methods ; Linear algebra ; Lower bounds ; Mathematical analysis ; Matrices (mathematics) ; Matrix algebra ; Numeric Computing ; Numerical Analysis ; Original Paper ; Quadratures ; Robustness (mathematics) ; Stieltjes integral ; Theory of Computation</subject><ispartof>Numerical algorithms, 2021-11, Vol.88 (3), p.1337-1359</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8dddeefa9b45263e928b1c8424abf6b702fc83e7a5b7b9c5325447134eb86b1f3</citedby><cites>FETCH-LOGICAL-c319t-8dddeefa9b45263e928b1c8424abf6b702fc83e7a5b7b9c5325447134eb86b1f3</cites><orcidid>0000-0001-6008-4056 ; 0000-0002-6036-3482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Meurant, Gérard</creatorcontrib><creatorcontrib>Papež, Jan</creatorcontrib><creatorcontrib>Tichý, Petr</creatorcontrib><title>Accurate error estimation in CG</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In practical computations, the (preconditioned) conjugate gradient (P)CG method is the iterative method of choice for solving systems of linear algebraic equations A x = b with a real symmetric positive definite matrix A . During the iterations, it is important to monitor the quality of the approximate solution x k so that the process could be stopped whenever x k is accurate enough. One of the most relevant quantities for monitoring the quality of x k is the squared A -norm of the error vector x − x k . This quantity cannot be easily evaluated; however, it can be estimated. Many of the existing estimation techniques are inspired by the view of CG as a procedure for approximating a certain Riemann–Stieltjes integral. The most natural technique is based on the Gauss quadrature approximation and provides a lower bound on the quantity of interest. The bound can be cheaply evaluated using terms that have to be computed anyway in the forthcoming CG iterations. If the squared A -norm of the error vector decreases rapidly, then the lower bound represents a tight estimate. In this paper, we suggest a heuristic strategy aiming to answer the question of how many forthcoming CG iterations are needed to get an estimate with the prescribed accuracy. Numerical experiments demonstrate that the suggested strategy is efficient and robust.</description><subject>Accuracy</subject><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Eigenvalues</subject><subject>Errors</subject><subject>Iterative methods</subject><subject>Linear algebra</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Matrix algebra</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Quadratures</subject><subject>Robustness (mathematics)</subject><subject>Stieltjes integral</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AS8WPEfz8qdJjkvRVVjYy3oOSZpIF23XpGXx2xut4M3Tm8PMvOGH0DWQOyBE3mcAIgUmFDApSuHjCVqAkBRrWovToglIDEyrc3SR854UF6FygW5W3k_JjqEKKQ2pCnns3u3YDX3V9VWzvkRn0b7lcPV7l-jl8WHXPOHNdv3crDbYM9AjVm3bhhCtdlzQmgVNlQOvOOXWxdpJQqNXLEgrnHTaC0YF5xIYD07VDiJbotu595CGj6msMPthSn15aagGVZf9oIuLzi6fhpxTiOaQytz0aYCYbxBmBmEKCPMDwhxLiM2hXMz9a0h_1f-kvgAjtl9A</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Meurant, Gérard</creator><creator>Papež, Jan</creator><creator>Tichý, Petr</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6008-4056</orcidid><orcidid>https://orcid.org/0000-0002-6036-3482</orcidid></search><sort><creationdate>20211101</creationdate><title>Accurate error estimation in CG</title><author>Meurant, Gérard ; Papež, Jan ; Tichý, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8dddeefa9b45263e928b1c8424abf6b702fc83e7a5b7b9c5325447134eb86b1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Eigenvalues</topic><topic>Errors</topic><topic>Iterative methods</topic><topic>Linear algebra</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Matrix algebra</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Quadratures</topic><topic>Robustness (mathematics)</topic><topic>Stieltjes integral</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meurant, Gérard</creatorcontrib><creatorcontrib>Papež, Jan</creatorcontrib><creatorcontrib>Tichý, Petr</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meurant, Gérard</au><au>Papež, Jan</au><au>Tichý, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate error estimation in CG</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>88</volume><issue>3</issue><spage>1337</spage><epage>1359</epage><pages>1337-1359</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In practical computations, the (preconditioned) conjugate gradient (P)CG method is the iterative method of choice for solving systems of linear algebraic equations A x = b with a real symmetric positive definite matrix A . During the iterations, it is important to monitor the quality of the approximate solution x k so that the process could be stopped whenever x k is accurate enough. One of the most relevant quantities for monitoring the quality of x k is the squared A -norm of the error vector x − x k . This quantity cannot be easily evaluated; however, it can be estimated. Many of the existing estimation techniques are inspired by the view of CG as a procedure for approximating a certain Riemann–Stieltjes integral. The most natural technique is based on the Gauss quadrature approximation and provides a lower bound on the quantity of interest. The bound can be cheaply evaluated using terms that have to be computed anyway in the forthcoming CG iterations. If the squared A -norm of the error vector decreases rapidly, then the lower bound represents a tight estimate. In this paper, we suggest a heuristic strategy aiming to answer the question of how many forthcoming CG iterations are needed to get an estimate with the prescribed accuracy. Numerical experiments demonstrate that the suggested strategy is efficient and robust.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-021-01078-w</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6008-4056</orcidid><orcidid>https://orcid.org/0000-0002-6036-3482</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2021-11, Vol.88 (3), p.1337-1359
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918610119
source Springer Nature
subjects Accuracy
Algebra
Algorithms
Approximation
Computer Science
Eigenvalues
Errors
Iterative methods
Linear algebra
Lower bounds
Mathematical analysis
Matrices (mathematics)
Matrix algebra
Numeric Computing
Numerical Analysis
Original Paper
Quadratures
Robustness (mathematics)
Stieltjes integral
Theory of Computation
title Accurate error estimation in CG
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20error%20estimation%20in%20CG&rft.jtitle=Numerical%20algorithms&rft.au=Meurant,%20G%C3%A9rard&rft.date=2021-11-01&rft.volume=88&rft.issue=3&rft.spage=1337&rft.epage=1359&rft.pages=1337-1359&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-021-01078-w&rft_dat=%3Cproquest_cross%3E2918610119%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8dddeefa9b45263e928b1c8424abf6b702fc83e7a5b7b9c5325447134eb86b1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918610119&rft_id=info:pmid/&rfr_iscdi=true