Loading…

A new form of liquid matter: Quantum droplets

This brief review summarizes recent theoretical and experimental results which predict and establish the existence of quantum droplets (QDs), i.e., robust two- and three-dimensional (2D and 3D) selftrapped states in Bose-Einstein condensates (BECs), which are stabilized by effective self-repulsion i...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of physics 2021-06, Vol.16 (3), p.32201, Article 32201
Main Authors: Luo, Zhi-Huan, Pang, Wei, Liu, Bin, Li, Yong-Yao, Malomed, Boris A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This brief review summarizes recent theoretical and experimental results which predict and establish the existence of quantum droplets (QDs), i.e., robust two- and three-dimensional (2D and 3D) selftrapped states in Bose-Einstein condensates (BECs), which are stabilized by effective self-repulsion induced by quantum fluctuations around the mean-field (MF) states [alias the Lee-Huang-Yang (LHY) effect]. The basic models are presented, taking special care of the dimension crossover, 2D→3D. Recently reported experimental results, which exhibit stable 3D and quasi-2D QDs in binary BECs, with the inter-component attraction slightly exceeding the MF self-repulsion in each component, and in single-component condensates of atoms carrying permanent magnetic moments, are presented in some detail. The summary of theoretical results is focused, chiefly, on 3D and quasi-2D QDs with embedded vorticity, as the possibility to stabilize such states is a remarkable prediction. Stable vortex states are presented both for QDs in free space, and for singular but physically relevant 2D modes pulled to the center by the inverse-square potential, with the quantum collapse suppressed by the LHY effect.
ISSN:2095-0462
2095-0470
DOI:10.1007/s11467-020-1020-2