Loading…

A compressive tracking based on time-space Kalman fusion model

The compressive tracking (CT)method is a simple yet efficient algorithm which compresses the high-dimensional features into a low-dimensional space while preserving most of the salient information. This paper proposes a compressive time-space Kalman fusion tracking algorithm to extend the CT method...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Information sciences 2016-01, Vol.59 (1), p.117-131
Main Authors: Yun, Xiao, Jing, Zhongliang, Xiao, Gang, Jin, Bo, Zhang, Canlong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The compressive tracking (CT)method is a simple yet efficient algorithm which compresses the high-dimensional features into a low-dimensional space while preserving most of the salient information. This paper proposes a compressive time-space Kalman fusion tracking algorithm to extend the CT method to the case of multi-sensor fusion tracking. Existing fusion trackers deal with multi-sensor features individually and without time-space adaptability. Besides, significant information cumulated in the updating process has not been fully exploited, which calls for a necessity for temporal information extraction. Unlike previous algorithms, the proposed fusion model is completed in both space and time domains. Also, extended Kalman filter is introduced to formulate an updating method for fusion coefficient optimization. The accuracy and robustness of the proposed fusion tracking algorithm are demonstrated by several experimental results.
ISSN:1674-733X
1869-1919
DOI:10.1007/s11432-015-5356-0