Loading…

On the circumcentered-reflection method for the convex feasibility problem

The ancient concept of circumcenter has recently given birth to the circumcentered-reflection method (CRM). CRM was first employed to solve best approximation problems involving affine subspaces. In this setting, it was shown to outperform the most prestigious projection-based schemes, namely, the D...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms 2021-04, Vol.86 (4), p.1475-1494
Main Authors: Behling, Roger, Bello-Cruz, Yunier, Santos, Luiz-Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-947723c4be0638c49bfb55cd4c1b1a5c5b13a11ebd3e5073c70690ab863a475c3
cites cdi_FETCH-LOGICAL-c319t-947723c4be0638c49bfb55cd4c1b1a5c5b13a11ebd3e5073c70690ab863a475c3
container_end_page 1494
container_issue 4
container_start_page 1475
container_title Numerical algorithms
container_volume 86
creator Behling, Roger
Bello-Cruz, Yunier
Santos, Luiz-Rafael
description The ancient concept of circumcenter has recently given birth to the circumcentered-reflection method (CRM). CRM was first employed to solve best approximation problems involving affine subspaces. In this setting, it was shown to outperform the most prestigious projection-based schemes, namely, the Douglas-Rachford method (DRM) and the method of alternating projections (MAP). We now prove convergence of CRM for finding a point in the intersection of a finite number of closed convex sets. This striking result is derived under a suitable product space reformulation in which a point in the intersection of a closed convex set with an affine subspace is sought. It turns out that CRM skillfully tackles the reformulated problem. We also show that for a point in the affine set the CRM iteration is always closer to the solution set than both the MAP and DRM iterations. Our theoretical results and numerical experiments, showing outstanding performance, establish CRM as a powerful tool for solving general convex feasibility problems.
doi_str_mv 10.1007/s11075-020-00941-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918612428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918612428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-947723c4be0638c49bfb55cd4c1b1a5c5b13a11ebd3e5073c70690ab863a475c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvu7DiOR1TxqUpdYLZi50JTpUmxU0T_PYYgsTHdDe_znu5h7BLhGgH0TUQErTgI4AAmR14csRkqLbgRhTpOO6DmKE15ys5i3AAkTOgZe1712bimzLfB77ee-pEC1TxQ05Ef26HPtjSuhzprhjAFh_6DPrOGqti6tmvHQ7YLg-toe85OmqqLdPE75-z1_u5l8ciXq4enxe2Se4lm5CbXWkifO4JClj43rnFK-Tr36LBSXjmUFSK5WpICLb2GwkDlykJWuVZeztnV1Jvuvu8pjnYz7EOfTlphsCxQ5KJMKTGlfBhiTP_YXWi3VThYBPvtzE7ObHJmf5zZIkFygmIK928U_qr_ob4ASrhu-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918612428</pqid></control><display><type>article</type><title>On the circumcentered-reflection method for the convex feasibility problem</title><source>Springer Nature</source><creator>Behling, Roger ; Bello-Cruz, Yunier ; Santos, Luiz-Rafael</creator><creatorcontrib>Behling, Roger ; Bello-Cruz, Yunier ; Santos, Luiz-Rafael</creatorcontrib><description>The ancient concept of circumcenter has recently given birth to the circumcentered-reflection method (CRM). CRM was first employed to solve best approximation problems involving affine subspaces. In this setting, it was shown to outperform the most prestigious projection-based schemes, namely, the Douglas-Rachford method (DRM) and the method of alternating projections (MAP). We now prove convergence of CRM for finding a point in the intersection of a finite number of closed convex sets. This striking result is derived under a suitable product space reformulation in which a point in the intersection of a closed convex set with an affine subspace is sought. It turns out that CRM skillfully tackles the reformulated problem. We also show that for a point in the affine set the CRM iteration is always closer to the solution set than both the MAP and DRM iterations. Our theoretical results and numerical experiments, showing outstanding performance, establish CRM as a powerful tool for solving general convex feasibility problems.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-020-00941-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Convexity ; Feasibility ; Intersections ; Iterative methods ; Numeric Computing ; Numerical Analysis ; Original Paper ; Subspaces ; Theory of Computation</subject><ispartof>Numerical algorithms, 2021-04, Vol.86 (4), p.1475-1494</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-947723c4be0638c49bfb55cd4c1b1a5c5b13a11ebd3e5073c70690ab863a475c3</citedby><cites>FETCH-LOGICAL-c319t-947723c4be0638c49bfb55cd4c1b1a5c5b13a11ebd3e5073c70690ab863a475c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Behling, Roger</creatorcontrib><creatorcontrib>Bello-Cruz, Yunier</creatorcontrib><creatorcontrib>Santos, Luiz-Rafael</creatorcontrib><title>On the circumcentered-reflection method for the convex feasibility problem</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>The ancient concept of circumcenter has recently given birth to the circumcentered-reflection method (CRM). CRM was first employed to solve best approximation problems involving affine subspaces. In this setting, it was shown to outperform the most prestigious projection-based schemes, namely, the Douglas-Rachford method (DRM) and the method of alternating projections (MAP). We now prove convergence of CRM for finding a point in the intersection of a finite number of closed convex sets. This striking result is derived under a suitable product space reformulation in which a point in the intersection of a closed convex set with an affine subspace is sought. It turns out that CRM skillfully tackles the reformulated problem. We also show that for a point in the affine set the CRM iteration is always closer to the solution set than both the MAP and DRM iterations. Our theoretical results and numerical experiments, showing outstanding performance, establish CRM as a powerful tool for solving general convex feasibility problems.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Convexity</subject><subject>Feasibility</subject><subject>Intersections</subject><subject>Iterative methods</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Subspaces</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvu7DiOR1TxqUpdYLZi50JTpUmxU0T_PYYgsTHdDe_znu5h7BLhGgH0TUQErTgI4AAmR14csRkqLbgRhTpOO6DmKE15ys5i3AAkTOgZe1712bimzLfB77ee-pEC1TxQ05Ef26HPtjSuhzprhjAFh_6DPrOGqti6tmvHQ7YLg-toe85OmqqLdPE75-z1_u5l8ciXq4enxe2Se4lm5CbXWkifO4JClj43rnFK-Tr36LBSXjmUFSK5WpICLb2GwkDlykJWuVZeztnV1Jvuvu8pjnYz7EOfTlphsCxQ5KJMKTGlfBhiTP_YXWi3VThYBPvtzE7ObHJmf5zZIkFygmIK928U_qr_ob4ASrhu-Q</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Behling, Roger</creator><creator>Bello-Cruz, Yunier</creator><creator>Santos, Luiz-Rafael</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20210401</creationdate><title>On the circumcentered-reflection method for the convex feasibility problem</title><author>Behling, Roger ; Bello-Cruz, Yunier ; Santos, Luiz-Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-947723c4be0638c49bfb55cd4c1b1a5c5b13a11ebd3e5073c70690ab863a475c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Convexity</topic><topic>Feasibility</topic><topic>Intersections</topic><topic>Iterative methods</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Subspaces</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behling, Roger</creatorcontrib><creatorcontrib>Bello-Cruz, Yunier</creatorcontrib><creatorcontrib>Santos, Luiz-Rafael</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behling, Roger</au><au>Bello-Cruz, Yunier</au><au>Santos, Luiz-Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the circumcentered-reflection method for the convex feasibility problem</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>86</volume><issue>4</issue><spage>1475</spage><epage>1494</epage><pages>1475-1494</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>The ancient concept of circumcenter has recently given birth to the circumcentered-reflection method (CRM). CRM was first employed to solve best approximation problems involving affine subspaces. In this setting, it was shown to outperform the most prestigious projection-based schemes, namely, the Douglas-Rachford method (DRM) and the method of alternating projections (MAP). We now prove convergence of CRM for finding a point in the intersection of a finite number of closed convex sets. This striking result is derived under a suitable product space reformulation in which a point in the intersection of a closed convex set with an affine subspace is sought. It turns out that CRM skillfully tackles the reformulated problem. We also show that for a point in the affine set the CRM iteration is always closer to the solution set than both the MAP and DRM iterations. Our theoretical results and numerical experiments, showing outstanding performance, establish CRM as a powerful tool for solving general convex feasibility problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-020-00941-6</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2021-04, Vol.86 (4), p.1475-1494
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918612428
source Springer Nature
subjects Algebra
Algorithms
Computer Science
Convexity
Feasibility
Intersections
Iterative methods
Numeric Computing
Numerical Analysis
Original Paper
Subspaces
Theory of Computation
title On the circumcentered-reflection method for the convex feasibility problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20circumcentered-reflection%20method%20for%20the%20convex%20feasibility%20problem&rft.jtitle=Numerical%20algorithms&rft.au=Behling,%20Roger&rft.date=2021-04-01&rft.volume=86&rft.issue=4&rft.spage=1475&rft.epage=1494&rft.pages=1475-1494&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-020-00941-6&rft_dat=%3Cproquest_cross%3E2918612428%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-947723c4be0638c49bfb55cd4c1b1a5c5b13a11ebd3e5073c70690ab863a475c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918612428&rft_id=info:pmid/&rfr_iscdi=true