Loading…

Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal

Rare-earth orthoferrite REFeO 3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm 0.2Nd 0.2Dy 0.2Y 0.2Yb 0.2)FeO 3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a s...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of physics 2024-04, Vol.19 (2), p.23203, Article 23203
Main Authors: Yang, Wanting, Zhu, Shuang, Luo, Xiong, Ma, Xiaoxuan, Shi, Chenfei, Song, Huan, Sun, Zhiqiang, Guo, Yefei, Dedkov, Yuriy, Kang, Baojuan, Bao, Jin-Ke, Cao, Shixun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3
cites cdi_FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3
container_end_page
container_issue 2
container_start_page 23203
container_title Frontiers of physics
container_volume 19
creator Yang, Wanting
Zhu, Shuang
Luo, Xiong
Ma, Xiaoxuan
Shi, Chenfei
Song, Huan
Sun, Zhiqiang
Guo, Yefei
Dedkov, Yuriy
Kang, Baojuan
Bao, Jin-Ke
Cao, Shixun
description Rare-earth orthoferrite REFeO 3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm 0.2Nd 0.2Dy 0.2Y 0.2Yb 0.2)FeO 3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a single-phase structure stabilized by high configurational entropy. In the low-temperature region (11.6‒ 14.4 K), the spin reorientation transition (SRT) of Γ 2 ( F x , C y , G z )‒Γ 24‒Γ 4 ( G x , A y , F z ) occurs. The weak ferromagnetic (FM) moment, which comes from the Fe sublattices distortion, rotates from the a- to c-axis. The two-step dynamic processes (Γ 2‒Γ 24‒Γ 4) are identified by AC susceptibility measurements. SRT in HEOR can be tuned in the range of 50‒60000 Oe, which is an order of magnitude larger than that of orthoferrites in the peer system, making it a candidate for high-field spin sensing. Typical spin-switching (SSW) and continuous spin-switching (CSSW) effects occur under low magnetic fields due to the strong interactions between RE‒Fe sublattices. The CSSW effect is tunable between 20‒50 Oe, and hence, HEOR potentially can be applied to spin modulation devices. Furthermore, because of the strong anisotropy of magnetic entropy change ( − Δ S m ) and refrigeration capacity ( RC) based on its high configurational entropy, HEOR is expected to provide a novel approach for refrigeration by altering the orientations of the crystallographic axes (anisotropic configurational entropy).
doi_str_mv 10.1007/s11467-023-1343-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918622242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918622242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosoKLo_wFvAczVfbdqjiF-geNFziNnJNrImdSaL7r-3S0VvnmYG3ucdeKrqVPBzwbm5ICF0a2ouVS2UVvXXXnUked_UXBu-_7u38rBaEL1xzoUwerqPKnh0qwQlejYOjoAVdIliiTkxl5bM51Ri2uQNMRpjYvQZix9iWrHpcGyIq6GGVDCPW5axDDkAYizAaMqsgXncUnHrk-oguDXB4mceVy83189Xd_XD0-391eVD7VXblNqI3nVgBHTgm0aAMEH3QgllVAPQBeVeeQhG9eB9o4NvWt1JzpfSmVYH7dVxdTb3jpg_NkDFvuUNpumllb3oWimlllNKzCmPmQgh2BHju8OtFdzuhNpZqJ2E2p1Q-zUxcmZoyqYV4F_zf1A3QztPgLAcEYhswJ1VwP_QbyWHjM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918622242</pqid></control><display><type>article</type><title>Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal</title><source>Springer Nature</source><creator>Yang, Wanting ; Zhu, Shuang ; Luo, Xiong ; Ma, Xiaoxuan ; Shi, Chenfei ; Song, Huan ; Sun, Zhiqiang ; Guo, Yefei ; Dedkov, Yuriy ; Kang, Baojuan ; Bao, Jin-Ke ; Cao, Shixun</creator><creatorcontrib>Yang, Wanting ; Zhu, Shuang ; Luo, Xiong ; Ma, Xiaoxuan ; Shi, Chenfei ; Song, Huan ; Sun, Zhiqiang ; Guo, Yefei ; Dedkov, Yuriy ; Kang, Baojuan ; Bao, Jin-Ke ; Cao, Shixun</creatorcontrib><description>Rare-earth orthoferrite REFeO 3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm 0.2Nd 0.2Dy 0.2Y 0.2Yb 0.2)FeO 3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a single-phase structure stabilized by high configurational entropy. In the low-temperature region (11.6‒ 14.4 K), the spin reorientation transition (SRT) of Γ 2 ( F x , C y , G z )‒Γ 24‒Γ 4 ( G x , A y , F z ) occurs. The weak ferromagnetic (FM) moment, which comes from the Fe sublattices distortion, rotates from the a- to c-axis. The two-step dynamic processes (Γ 2‒Γ 24‒Γ 4) are identified by AC susceptibility measurements. SRT in HEOR can be tuned in the range of 50‒60000 Oe, which is an order of magnitude larger than that of orthoferrites in the peer system, making it a candidate for high-field spin sensing. Typical spin-switching (SSW) and continuous spin-switching (CSSW) effects occur under low magnetic fields due to the strong interactions between RE‒Fe sublattices. The CSSW effect is tunable between 20‒50 Oe, and hence, HEOR potentially can be applied to spin modulation devices. Furthermore, because of the strong anisotropy of magnetic entropy change ( − Δ S m ) and refrigeration capacity ( RC) based on its high configurational entropy, HEOR is expected to provide a novel approach for refrigeration by altering the orientations of the crystallographic axes (anisotropic configurational entropy).</description><identifier>ISSN: 2095-0462</identifier><identifier>EISSN: 2095-0470</identifier><identifier>DOI: 10.1007/s11467-023-1343-x</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Anisotropy ; Astronomy ; Astrophysics and Cosmology ; Atomic ; Condensed Matter Physics ; Crystallography ; Entropy ; Ferromagnetism ; high-entropy oxide ; Low temperature ; Magnetic fields ; magnetocaloric effect ; Molecular ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Rare earth elements ; rare-earth orthoferrite ; Refrigeration ; Research Article ; Single crystals ; Solid phases ; spin reorientation transition ; spin switching ; Switching</subject><ispartof>Frontiers of physics, 2024-04, Vol.19 (2), p.23203, Article 23203</ispartof><rights>Copyright reserved, 2023, Higher Education Press</rights><rights>Higher Education Press 2023</rights><rights>Higher Education Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3</citedby><cites>FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Wanting</creatorcontrib><creatorcontrib>Zhu, Shuang</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Ma, Xiaoxuan</creatorcontrib><creatorcontrib>Shi, Chenfei</creatorcontrib><creatorcontrib>Song, Huan</creatorcontrib><creatorcontrib>Sun, Zhiqiang</creatorcontrib><creatorcontrib>Guo, Yefei</creatorcontrib><creatorcontrib>Dedkov, Yuriy</creatorcontrib><creatorcontrib>Kang, Baojuan</creatorcontrib><creatorcontrib>Bao, Jin-Ke</creatorcontrib><creatorcontrib>Cao, Shixun</creatorcontrib><title>Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal</title><title>Frontiers of physics</title><addtitle>Front. Phys</addtitle><description>Rare-earth orthoferrite REFeO 3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm 0.2Nd 0.2Dy 0.2Y 0.2Yb 0.2)FeO 3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a single-phase structure stabilized by high configurational entropy. In the low-temperature region (11.6‒ 14.4 K), the spin reorientation transition (SRT) of Γ 2 ( F x , C y , G z )‒Γ 24‒Γ 4 ( G x , A y , F z ) occurs. The weak ferromagnetic (FM) moment, which comes from the Fe sublattices distortion, rotates from the a- to c-axis. The two-step dynamic processes (Γ 2‒Γ 24‒Γ 4) are identified by AC susceptibility measurements. SRT in HEOR can be tuned in the range of 50‒60000 Oe, which is an order of magnitude larger than that of orthoferrites in the peer system, making it a candidate for high-field spin sensing. Typical spin-switching (SSW) and continuous spin-switching (CSSW) effects occur under low magnetic fields due to the strong interactions between RE‒Fe sublattices. The CSSW effect is tunable between 20‒50 Oe, and hence, HEOR potentially can be applied to spin modulation devices. Furthermore, because of the strong anisotropy of magnetic entropy change ( − Δ S m ) and refrigeration capacity ( RC) based on its high configurational entropy, HEOR is expected to provide a novel approach for refrigeration by altering the orientations of the crystallographic axes (anisotropic configurational entropy).</description><subject>Anisotropy</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Atomic</subject><subject>Condensed Matter Physics</subject><subject>Crystallography</subject><subject>Entropy</subject><subject>Ferromagnetism</subject><subject>high-entropy oxide</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>magnetocaloric effect</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rare earth elements</subject><subject>rare-earth orthoferrite</subject><subject>Refrigeration</subject><subject>Research Article</subject><subject>Single crystals</subject><subject>Solid phases</subject><subject>spin reorientation transition</subject><subject>spin switching</subject><subject>Switching</subject><issn>2095-0462</issn><issn>2095-0470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosoKLo_wFvAczVfbdqjiF-geNFziNnJNrImdSaL7r-3S0VvnmYG3ucdeKrqVPBzwbm5ICF0a2ouVS2UVvXXXnUked_UXBu-_7u38rBaEL1xzoUwerqPKnh0qwQlejYOjoAVdIliiTkxl5bM51Ri2uQNMRpjYvQZix9iWrHpcGyIq6GGVDCPW5axDDkAYizAaMqsgXncUnHrk-oguDXB4mceVy83189Xd_XD0-391eVD7VXblNqI3nVgBHTgm0aAMEH3QgllVAPQBeVeeQhG9eB9o4NvWt1JzpfSmVYH7dVxdTb3jpg_NkDFvuUNpumllb3oWimlllNKzCmPmQgh2BHju8OtFdzuhNpZqJ2E2p1Q-zUxcmZoyqYV4F_zf1A3QztPgLAcEYhswJ1VwP_QbyWHjM8</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Yang, Wanting</creator><creator>Zhu, Shuang</creator><creator>Luo, Xiong</creator><creator>Ma, Xiaoxuan</creator><creator>Shi, Chenfei</creator><creator>Song, Huan</creator><creator>Sun, Zhiqiang</creator><creator>Guo, Yefei</creator><creator>Dedkov, Yuriy</creator><creator>Kang, Baojuan</creator><creator>Bao, Jin-Ke</creator><creator>Cao, Shixun</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal</title><author>Yang, Wanting ; Zhu, Shuang ; Luo, Xiong ; Ma, Xiaoxuan ; Shi, Chenfei ; Song, Huan ; Sun, Zhiqiang ; Guo, Yefei ; Dedkov, Yuriy ; Kang, Baojuan ; Bao, Jin-Ke ; Cao, Shixun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Atomic</topic><topic>Condensed Matter Physics</topic><topic>Crystallography</topic><topic>Entropy</topic><topic>Ferromagnetism</topic><topic>high-entropy oxide</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>magnetocaloric effect</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rare earth elements</topic><topic>rare-earth orthoferrite</topic><topic>Refrigeration</topic><topic>Research Article</topic><topic>Single crystals</topic><topic>Solid phases</topic><topic>spin reorientation transition</topic><topic>spin switching</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wanting</creatorcontrib><creatorcontrib>Zhu, Shuang</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Ma, Xiaoxuan</creatorcontrib><creatorcontrib>Shi, Chenfei</creatorcontrib><creatorcontrib>Song, Huan</creatorcontrib><creatorcontrib>Sun, Zhiqiang</creatorcontrib><creatorcontrib>Guo, Yefei</creatorcontrib><creatorcontrib>Dedkov, Yuriy</creatorcontrib><creatorcontrib>Kang, Baojuan</creatorcontrib><creatorcontrib>Bao, Jin-Ke</creatorcontrib><creatorcontrib>Cao, Shixun</creatorcontrib><collection>CrossRef</collection><jtitle>Frontiers of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wanting</au><au>Zhu, Shuang</au><au>Luo, Xiong</au><au>Ma, Xiaoxuan</au><au>Shi, Chenfei</au><au>Song, Huan</au><au>Sun, Zhiqiang</au><au>Guo, Yefei</au><au>Dedkov, Yuriy</au><au>Kang, Baojuan</au><au>Bao, Jin-Ke</au><au>Cao, Shixun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal</atitle><jtitle>Frontiers of physics</jtitle><stitle>Front. Phys</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>19</volume><issue>2</issue><spage>23203</spage><pages>23203-</pages><artnum>23203</artnum><issn>2095-0462</issn><eissn>2095-0470</eissn><abstract>Rare-earth orthoferrite REFeO 3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm 0.2Nd 0.2Dy 0.2Y 0.2Yb 0.2)FeO 3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a single-phase structure stabilized by high configurational entropy. In the low-temperature region (11.6‒ 14.4 K), the spin reorientation transition (SRT) of Γ 2 ( F x , C y , G z )‒Γ 24‒Γ 4 ( G x , A y , F z ) occurs. The weak ferromagnetic (FM) moment, which comes from the Fe sublattices distortion, rotates from the a- to c-axis. The two-step dynamic processes (Γ 2‒Γ 24‒Γ 4) are identified by AC susceptibility measurements. SRT in HEOR can be tuned in the range of 50‒60000 Oe, which is an order of magnitude larger than that of orthoferrites in the peer system, making it a candidate for high-field spin sensing. Typical spin-switching (SSW) and continuous spin-switching (CSSW) effects occur under low magnetic fields due to the strong interactions between RE‒Fe sublattices. The CSSW effect is tunable between 20‒50 Oe, and hence, HEOR potentially can be applied to spin modulation devices. Furthermore, because of the strong anisotropy of magnetic entropy change ( − Δ S m ) and refrigeration capacity ( RC) based on its high configurational entropy, HEOR is expected to provide a novel approach for refrigeration by altering the orientations of the crystallographic axes (anisotropic configurational entropy).</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11467-023-1343-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 2095-0462
ispartof Frontiers of physics, 2024-04, Vol.19 (2), p.23203, Article 23203
issn 2095-0462
2095-0470
language eng
recordid cdi_proquest_journals_2918622242
source Springer Nature
subjects Anisotropy
Astronomy
Astrophysics and Cosmology
Atomic
Condensed Matter Physics
Crystallography
Entropy
Ferromagnetism
high-entropy oxide
Low temperature
Magnetic fields
magnetocaloric effect
Molecular
Optical and Plasma Physics
Particle and Nuclear Physics
Phase transitions
Physics
Physics and Astronomy
Rare earth elements
rare-earth orthoferrite
Refrigeration
Research Article
Single crystals
Solid phases
spin reorientation transition
spin switching
Switching
title Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20phase%20transition%20and%20continuous%20spin%20switching%20in%20a%20high-entropy%20orthoferrite%20single%20crystal&rft.jtitle=Frontiers%20of%20physics&rft.au=Yang,%20Wanting&rft.date=2024-04-01&rft.volume=19&rft.issue=2&rft.spage=23203&rft.pages=23203-&rft.artnum=23203&rft.issn=2095-0462&rft.eissn=2095-0470&rft_id=info:doi/10.1007/s11467-023-1343-x&rft_dat=%3Cproquest_cross%3E2918622242%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918622242&rft_id=info:pmid/&rfr_iscdi=true