Loading…
Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal
Rare-earth orthoferrite REFeO 3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm 0.2Nd 0.2Dy 0.2Y 0.2Yb 0.2)FeO 3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a s...
Saved in:
Published in: | Frontiers of physics 2024-04, Vol.19 (2), p.23203, Article 23203 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3 |
container_end_page | |
container_issue | 2 |
container_start_page | 23203 |
container_title | Frontiers of physics |
container_volume | 19 |
creator | Yang, Wanting Zhu, Shuang Luo, Xiong Ma, Xiaoxuan Shi, Chenfei Song, Huan Sun, Zhiqiang Guo, Yefei Dedkov, Yuriy Kang, Baojuan Bao, Jin-Ke Cao, Shixun |
description | Rare-earth orthoferrite REFeO 3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm 0.2Nd 0.2Dy 0.2Y 0.2Yb 0.2)FeO 3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a single-phase structure stabilized by high configurational entropy. In the low-temperature region (11.6‒ 14.4 K), the spin reorientation transition (SRT) of Γ 2 ( F x , C y , G z )‒Γ 24‒Γ 4 ( G x , A y , F z ) occurs. The weak ferromagnetic (FM) moment, which comes from the Fe sublattices distortion, rotates from the a- to c-axis. The two-step dynamic processes (Γ 2‒Γ 24‒Γ 4) are identified by AC susceptibility measurements. SRT in HEOR can be tuned in the range of 50‒60000 Oe, which is an order of magnitude larger than that of orthoferrites in the peer system, making it a candidate for high-field spin sensing. Typical spin-switching (SSW) and continuous spin-switching (CSSW) effects occur under low magnetic fields due to the strong interactions between RE‒Fe sublattices. The CSSW effect is tunable between 20‒50 Oe, and hence, HEOR potentially can be applied to spin modulation devices. Furthermore, because of the strong anisotropy of magnetic entropy change ( − Δ S m ) and refrigeration capacity ( RC) based on its high configurational entropy, HEOR is expected to provide a novel approach for refrigeration by altering the orientations of the crystallographic axes (anisotropic configurational entropy). |
doi_str_mv | 10.1007/s11467-023-1343-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918622242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918622242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosoKLo_wFvAczVfbdqjiF-geNFziNnJNrImdSaL7r-3S0VvnmYG3ucdeKrqVPBzwbm5ICF0a2ouVS2UVvXXXnUked_UXBu-_7u38rBaEL1xzoUwerqPKnh0qwQlejYOjoAVdIliiTkxl5bM51Ri2uQNMRpjYvQZix9iWrHpcGyIq6GGVDCPW5axDDkAYizAaMqsgXncUnHrk-oguDXB4mceVy83189Xd_XD0-391eVD7VXblNqI3nVgBHTgm0aAMEH3QgllVAPQBeVeeQhG9eB9o4NvWt1JzpfSmVYH7dVxdTb3jpg_NkDFvuUNpumllb3oWimlllNKzCmPmQgh2BHju8OtFdzuhNpZqJ2E2p1Q-zUxcmZoyqYV4F_zf1A3QztPgLAcEYhswJ1VwP_QbyWHjM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918622242</pqid></control><display><type>article</type><title>Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal</title><source>Springer Nature</source><creator>Yang, Wanting ; Zhu, Shuang ; Luo, Xiong ; Ma, Xiaoxuan ; Shi, Chenfei ; Song, Huan ; Sun, Zhiqiang ; Guo, Yefei ; Dedkov, Yuriy ; Kang, Baojuan ; Bao, Jin-Ke ; Cao, Shixun</creator><creatorcontrib>Yang, Wanting ; Zhu, Shuang ; Luo, Xiong ; Ma, Xiaoxuan ; Shi, Chenfei ; Song, Huan ; Sun, Zhiqiang ; Guo, Yefei ; Dedkov, Yuriy ; Kang, Baojuan ; Bao, Jin-Ke ; Cao, Shixun</creatorcontrib><description>Rare-earth orthoferrite REFeO 3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm 0.2Nd 0.2Dy 0.2Y 0.2Yb 0.2)FeO 3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a single-phase structure stabilized by high configurational entropy. In the low-temperature region (11.6‒ 14.4 K), the spin reorientation transition (SRT) of Γ 2 ( F x , C y , G z )‒Γ 24‒Γ 4 ( G x , A y , F z ) occurs. The weak ferromagnetic (FM) moment, which comes from the Fe sublattices distortion, rotates from the a- to c-axis. The two-step dynamic processes (Γ 2‒Γ 24‒Γ 4) are identified by AC susceptibility measurements. SRT in HEOR can be tuned in the range of 50‒60000 Oe, which is an order of magnitude larger than that of orthoferrites in the peer system, making it a candidate for high-field spin sensing. Typical spin-switching (SSW) and continuous spin-switching (CSSW) effects occur under low magnetic fields due to the strong interactions between RE‒Fe sublattices. The CSSW effect is tunable between 20‒50 Oe, and hence, HEOR potentially can be applied to spin modulation devices. Furthermore, because of the strong anisotropy of magnetic entropy change ( − Δ S m ) and refrigeration capacity ( RC) based on its high configurational entropy, HEOR is expected to provide a novel approach for refrigeration by altering the orientations of the crystallographic axes (anisotropic configurational entropy).</description><identifier>ISSN: 2095-0462</identifier><identifier>EISSN: 2095-0470</identifier><identifier>DOI: 10.1007/s11467-023-1343-x</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Anisotropy ; Astronomy ; Astrophysics and Cosmology ; Atomic ; Condensed Matter Physics ; Crystallography ; Entropy ; Ferromagnetism ; high-entropy oxide ; Low temperature ; Magnetic fields ; magnetocaloric effect ; Molecular ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Rare earth elements ; rare-earth orthoferrite ; Refrigeration ; Research Article ; Single crystals ; Solid phases ; spin reorientation transition ; spin switching ; Switching</subject><ispartof>Frontiers of physics, 2024-04, Vol.19 (2), p.23203, Article 23203</ispartof><rights>Copyright reserved, 2023, Higher Education Press</rights><rights>Higher Education Press 2023</rights><rights>Higher Education Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3</citedby><cites>FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Wanting</creatorcontrib><creatorcontrib>Zhu, Shuang</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Ma, Xiaoxuan</creatorcontrib><creatorcontrib>Shi, Chenfei</creatorcontrib><creatorcontrib>Song, Huan</creatorcontrib><creatorcontrib>Sun, Zhiqiang</creatorcontrib><creatorcontrib>Guo, Yefei</creatorcontrib><creatorcontrib>Dedkov, Yuriy</creatorcontrib><creatorcontrib>Kang, Baojuan</creatorcontrib><creatorcontrib>Bao, Jin-Ke</creatorcontrib><creatorcontrib>Cao, Shixun</creatorcontrib><title>Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal</title><title>Frontiers of physics</title><addtitle>Front. Phys</addtitle><description>Rare-earth orthoferrite REFeO 3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm 0.2Nd 0.2Dy 0.2Y 0.2Yb 0.2)FeO 3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a single-phase structure stabilized by high configurational entropy. In the low-temperature region (11.6‒ 14.4 K), the spin reorientation transition (SRT) of Γ 2 ( F x , C y , G z )‒Γ 24‒Γ 4 ( G x , A y , F z ) occurs. The weak ferromagnetic (FM) moment, which comes from the Fe sublattices distortion, rotates from the a- to c-axis. The two-step dynamic processes (Γ 2‒Γ 24‒Γ 4) are identified by AC susceptibility measurements. SRT in HEOR can be tuned in the range of 50‒60000 Oe, which is an order of magnitude larger than that of orthoferrites in the peer system, making it a candidate for high-field spin sensing. Typical spin-switching (SSW) and continuous spin-switching (CSSW) effects occur under low magnetic fields due to the strong interactions between RE‒Fe sublattices. The CSSW effect is tunable between 20‒50 Oe, and hence, HEOR potentially can be applied to spin modulation devices. Furthermore, because of the strong anisotropy of magnetic entropy change ( − Δ S m ) and refrigeration capacity ( RC) based on its high configurational entropy, HEOR is expected to provide a novel approach for refrigeration by altering the orientations of the crystallographic axes (anisotropic configurational entropy).</description><subject>Anisotropy</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Atomic</subject><subject>Condensed Matter Physics</subject><subject>Crystallography</subject><subject>Entropy</subject><subject>Ferromagnetism</subject><subject>high-entropy oxide</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>magnetocaloric effect</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rare earth elements</subject><subject>rare-earth orthoferrite</subject><subject>Refrigeration</subject><subject>Research Article</subject><subject>Single crystals</subject><subject>Solid phases</subject><subject>spin reorientation transition</subject><subject>spin switching</subject><subject>Switching</subject><issn>2095-0462</issn><issn>2095-0470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosoKLo_wFvAczVfbdqjiF-geNFziNnJNrImdSaL7r-3S0VvnmYG3ucdeKrqVPBzwbm5ICF0a2ouVS2UVvXXXnUked_UXBu-_7u38rBaEL1xzoUwerqPKnh0qwQlejYOjoAVdIliiTkxl5bM51Ri2uQNMRpjYvQZix9iWrHpcGyIq6GGVDCPW5axDDkAYizAaMqsgXncUnHrk-oguDXB4mceVy83189Xd_XD0-391eVD7VXblNqI3nVgBHTgm0aAMEH3QgllVAPQBeVeeQhG9eB9o4NvWt1JzpfSmVYH7dVxdTb3jpg_NkDFvuUNpumllb3oWimlllNKzCmPmQgh2BHju8OtFdzuhNpZqJ2E2p1Q-zUxcmZoyqYV4F_zf1A3QztPgLAcEYhswJ1VwP_QbyWHjM8</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Yang, Wanting</creator><creator>Zhu, Shuang</creator><creator>Luo, Xiong</creator><creator>Ma, Xiaoxuan</creator><creator>Shi, Chenfei</creator><creator>Song, Huan</creator><creator>Sun, Zhiqiang</creator><creator>Guo, Yefei</creator><creator>Dedkov, Yuriy</creator><creator>Kang, Baojuan</creator><creator>Bao, Jin-Ke</creator><creator>Cao, Shixun</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal</title><author>Yang, Wanting ; Zhu, Shuang ; Luo, Xiong ; Ma, Xiaoxuan ; Shi, Chenfei ; Song, Huan ; Sun, Zhiqiang ; Guo, Yefei ; Dedkov, Yuriy ; Kang, Baojuan ; Bao, Jin-Ke ; Cao, Shixun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Atomic</topic><topic>Condensed Matter Physics</topic><topic>Crystallography</topic><topic>Entropy</topic><topic>Ferromagnetism</topic><topic>high-entropy oxide</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>magnetocaloric effect</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rare earth elements</topic><topic>rare-earth orthoferrite</topic><topic>Refrigeration</topic><topic>Research Article</topic><topic>Single crystals</topic><topic>Solid phases</topic><topic>spin reorientation transition</topic><topic>spin switching</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wanting</creatorcontrib><creatorcontrib>Zhu, Shuang</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Ma, Xiaoxuan</creatorcontrib><creatorcontrib>Shi, Chenfei</creatorcontrib><creatorcontrib>Song, Huan</creatorcontrib><creatorcontrib>Sun, Zhiqiang</creatorcontrib><creatorcontrib>Guo, Yefei</creatorcontrib><creatorcontrib>Dedkov, Yuriy</creatorcontrib><creatorcontrib>Kang, Baojuan</creatorcontrib><creatorcontrib>Bao, Jin-Ke</creatorcontrib><creatorcontrib>Cao, Shixun</creatorcontrib><collection>CrossRef</collection><jtitle>Frontiers of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wanting</au><au>Zhu, Shuang</au><au>Luo, Xiong</au><au>Ma, Xiaoxuan</au><au>Shi, Chenfei</au><au>Song, Huan</au><au>Sun, Zhiqiang</au><au>Guo, Yefei</au><au>Dedkov, Yuriy</au><au>Kang, Baojuan</au><au>Bao, Jin-Ke</au><au>Cao, Shixun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal</atitle><jtitle>Frontiers of physics</jtitle><stitle>Front. Phys</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>19</volume><issue>2</issue><spage>23203</spage><pages>23203-</pages><artnum>23203</artnum><issn>2095-0462</issn><eissn>2095-0470</eissn><abstract>Rare-earth orthoferrite REFeO 3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm 0.2Nd 0.2Dy 0.2Y 0.2Yb 0.2)FeO 3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a single-phase structure stabilized by high configurational entropy. In the low-temperature region (11.6‒ 14.4 K), the spin reorientation transition (SRT) of Γ 2 ( F x , C y , G z )‒Γ 24‒Γ 4 ( G x , A y , F z ) occurs. The weak ferromagnetic (FM) moment, which comes from the Fe sublattices distortion, rotates from the a- to c-axis. The two-step dynamic processes (Γ 2‒Γ 24‒Γ 4) are identified by AC susceptibility measurements. SRT in HEOR can be tuned in the range of 50‒60000 Oe, which is an order of magnitude larger than that of orthoferrites in the peer system, making it a candidate for high-field spin sensing. Typical spin-switching (SSW) and continuous spin-switching (CSSW) effects occur under low magnetic fields due to the strong interactions between RE‒Fe sublattices. The CSSW effect is tunable between 20‒50 Oe, and hence, HEOR potentially can be applied to spin modulation devices. Furthermore, because of the strong anisotropy of magnetic entropy change ( − Δ S m ) and refrigeration capacity ( RC) based on its high configurational entropy, HEOR is expected to provide a novel approach for refrigeration by altering the orientations of the crystallographic axes (anisotropic configurational entropy).</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11467-023-1343-x</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-0462 |
ispartof | Frontiers of physics, 2024-04, Vol.19 (2), p.23203, Article 23203 |
issn | 2095-0462 2095-0470 |
language | eng |
recordid | cdi_proquest_journals_2918622242 |
source | Springer Nature |
subjects | Anisotropy Astronomy Astrophysics and Cosmology Atomic Condensed Matter Physics Crystallography Entropy Ferromagnetism high-entropy oxide Low temperature Magnetic fields magnetocaloric effect Molecular Optical and Plasma Physics Particle and Nuclear Physics Phase transitions Physics Physics and Astronomy Rare earth elements rare-earth orthoferrite Refrigeration Research Article Single crystals Solid phases spin reorientation transition spin switching Switching |
title | Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20phase%20transition%20and%20continuous%20spin%20switching%20in%20a%20high-entropy%20orthoferrite%20single%20crystal&rft.jtitle=Frontiers%20of%20physics&rft.au=Yang,%20Wanting&rft.date=2024-04-01&rft.volume=19&rft.issue=2&rft.spage=23203&rft.pages=23203-&rft.artnum=23203&rft.issn=2095-0462&rft.eissn=2095-0470&rft_id=info:doi/10.1007/s11467-023-1343-x&rft_dat=%3Cproquest_cross%3E2918622242%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-719a8e71e8ec551e17f491313735ee8f3ab0ff739ecc54fc5648200d2a764f4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918622242&rft_id=info:pmid/&rfr_iscdi=true |