Loading…
Efficient compressive sensing tracking via mixed classifier decision
Recent years have witnessed successful use of tracking-by-detection methods, with a number of promising results being achieved. Most of these algorithms use a sliding window to collect samples and then employ these samples to train and update the classifiers. They also use an updated classifier to e...
Saved in:
Published in: | Science China. Information sciences 2016-07, Vol.59 (7), p.139-153, Article 072102 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43 |
container_end_page | 153 |
container_issue | 7 |
container_start_page | 139 |
container_title | Science China. Information sciences |
container_volume | 59 |
creator | Sun, Hang Li, Jing Chang, Jun Du, Bo Su, Zhenyang |
description | Recent years have witnessed successful use of tracking-by-detection methods, with a number of promising results being achieved. Most of these algorithms use a sliding window to collect samples and then employ these samples to train and update the classifiers. They also use an updated classifier to establish the appearance model and they take the maximum response value of the classifier as the location of the target within a fixed radius. Compressive Tracking (CT) is a novel tracking-by-detection algorithm that updates the appearance model in a compressed domain. However, the conventional CT algorithm uses a single classifier to detect the target, and if the selected region drifts, the classifier may become inaccurate. Furthermore, the CT algorithm updates the classifier parameters with a constant learning rate. Therefore, if the target is completely occluded for an extended period, the classifier will instead learn the features of the covered object and the target will ultimately be lost. To overcome these problems, we present a compressive sensing tracking algorithm using mixed classifier decision. The main improvements in our algorithm are that it adopts mixed classifiers to locate the target and it applies a dynamic learning rate to update the appearance model. An experimental comparison with state-of-the-art algorithms on eight benchmark video sequences in complicated situations shows that the proposed algorithm achieves the best performance with 12 pixels on the average center location error and 66.82% on the average overlap score. |
doi_str_mv | 10.1007/s11432-015-5424-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918623709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669375525</cqvip_id><sourcerecordid>2918623709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWGo_gLdFz9Ekk8fmKLU-oOBFwVvYzSY1td1tk23Rb2_KFr05l5nD_8H8ELqk5IYSom4TpRwYJlRgwRnH4gSNaCk1pprq03xLxbECeD9Hk5SWJA8AYaocofuZ98EG1_aF7dab6FIKe1ck16bQLoo-VvbzcOxDVazDl2sKu6qyxgcXi8bZkELXXqAzX62Smxz3GL09zF6nT3j-8vg8vZtjC6XssSit56rWJVe04dA4TnRTc8oqQr0nwBtqmdW1Z4pIzYA5UisoQZaUVOA4jNH1kLuJ3XbnUm-W3S62udIwnR9moIjOKjqobOxSis6bTQzrKn4bSsyBlxl4mczLHHgZkT1s8KSsbRcu_iX_Z7o6Fn107WKbfb9NUmpQQjABP4bfd8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918623709</pqid></control><display><type>article</type><title>Efficient compressive sensing tracking via mixed classifier decision</title><source>Springer Link</source><creator>Sun, Hang ; Li, Jing ; Chang, Jun ; Du, Bo ; Su, Zhenyang</creator><creatorcontrib>Sun, Hang ; Li, Jing ; Chang, Jun ; Du, Bo ; Su, Zhenyang</creatorcontrib><description>Recent years have witnessed successful use of tracking-by-detection methods, with a number of promising results being achieved. Most of these algorithms use a sliding window to collect samples and then employ these samples to train and update the classifiers. They also use an updated classifier to establish the appearance model and they take the maximum response value of the classifier as the location of the target within a fixed radius. Compressive Tracking (CT) is a novel tracking-by-detection algorithm that updates the appearance model in a compressed domain. However, the conventional CT algorithm uses a single classifier to detect the target, and if the selected region drifts, the classifier may become inaccurate. Furthermore, the CT algorithm updates the classifier parameters with a constant learning rate. Therefore, if the target is completely occluded for an extended period, the classifier will instead learn the features of the covered object and the target will ultimately be lost. To overcome these problems, we present a compressive sensing tracking algorithm using mixed classifier decision. The main improvements in our algorithm are that it adopts mixed classifiers to locate the target and it applies a dynamic learning rate to update the appearance model. An experimental comparison with state-of-the-art algorithms on eight benchmark video sequences in complicated situations shows that the proposed algorithm achieves the best performance with 12 pixels on the average center location error and 66.82% on the average overlap score.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-015-5424-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Algorithms ; Classifiers ; Computer Science ; CT算法 ; Information Systems and Communication Service ; Research Paper ; Target detection ; Tracking ; 位置误差 ; 分类决策 ; 分类器 ; 压缩域 ; 感知 ; 混合 ; 跟踪检测</subject><ispartof>Science China. Information sciences, 2016-07, Vol.59 (7), p.139-153, Article 072102</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43</citedby><cites>FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sun, Hang</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Chang, Jun</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Su, Zhenyang</creatorcontrib><title>Efficient compressive sensing tracking via mixed classifier decision</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>Recent years have witnessed successful use of tracking-by-detection methods, with a number of promising results being achieved. Most of these algorithms use a sliding window to collect samples and then employ these samples to train and update the classifiers. They also use an updated classifier to establish the appearance model and they take the maximum response value of the classifier as the location of the target within a fixed radius. Compressive Tracking (CT) is a novel tracking-by-detection algorithm that updates the appearance model in a compressed domain. However, the conventional CT algorithm uses a single classifier to detect the target, and if the selected region drifts, the classifier may become inaccurate. Furthermore, the CT algorithm updates the classifier parameters with a constant learning rate. Therefore, if the target is completely occluded for an extended period, the classifier will instead learn the features of the covered object and the target will ultimately be lost. To overcome these problems, we present a compressive sensing tracking algorithm using mixed classifier decision. The main improvements in our algorithm are that it adopts mixed classifiers to locate the target and it applies a dynamic learning rate to update the appearance model. An experimental comparison with state-of-the-art algorithms on eight benchmark video sequences in complicated situations shows that the proposed algorithm achieves the best performance with 12 pixels on the average center location error and 66.82% on the average overlap score.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Computer Science</subject><subject>CT算法</subject><subject>Information Systems and Communication Service</subject><subject>Research Paper</subject><subject>Target detection</subject><subject>Tracking</subject><subject>位置误差</subject><subject>分类决策</subject><subject>分类器</subject><subject>压缩域</subject><subject>感知</subject><subject>混合</subject><subject>跟踪检测</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWGo_gLdFz9Ekk8fmKLU-oOBFwVvYzSY1td1tk23Rb2_KFr05l5nD_8H8ELqk5IYSom4TpRwYJlRgwRnH4gSNaCk1pprq03xLxbECeD9Hk5SWJA8AYaocofuZ98EG1_aF7dab6FIKe1ck16bQLoo-VvbzcOxDVazDl2sKu6qyxgcXi8bZkELXXqAzX62Smxz3GL09zF6nT3j-8vg8vZtjC6XssSit56rWJVe04dA4TnRTc8oqQr0nwBtqmdW1Z4pIzYA5UisoQZaUVOA4jNH1kLuJ3XbnUm-W3S62udIwnR9moIjOKjqobOxSis6bTQzrKn4bSsyBlxl4mczLHHgZkT1s8KSsbRcu_iX_Z7o6Fn107WKbfb9NUmpQQjABP4bfd8c</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Sun, Hang</creator><creator>Li, Jing</creator><creator>Chang, Jun</creator><creator>Du, Bo</creator><creator>Su, Zhenyang</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160701</creationdate><title>Efficient compressive sensing tracking via mixed classifier decision</title><author>Sun, Hang ; Li, Jing ; Chang, Jun ; Du, Bo ; Su, Zhenyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Computer Science</topic><topic>CT算法</topic><topic>Information Systems and Communication Service</topic><topic>Research Paper</topic><topic>Target detection</topic><topic>Tracking</topic><topic>位置误差</topic><topic>分类决策</topic><topic>分类器</topic><topic>压缩域</topic><topic>感知</topic><topic>混合</topic><topic>跟踪检测</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Hang</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Chang, Jun</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Su, Zhenyang</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Hang</au><au>Li, Jing</au><au>Chang, Jun</au><au>Du, Bo</au><au>Su, Zhenyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient compressive sensing tracking via mixed classifier decision</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>59</volume><issue>7</issue><spage>139</spage><epage>153</epage><pages>139-153</pages><artnum>072102</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>Recent years have witnessed successful use of tracking-by-detection methods, with a number of promising results being achieved. Most of these algorithms use a sliding window to collect samples and then employ these samples to train and update the classifiers. They also use an updated classifier to establish the appearance model and they take the maximum response value of the classifier as the location of the target within a fixed radius. Compressive Tracking (CT) is a novel tracking-by-detection algorithm that updates the appearance model in a compressed domain. However, the conventional CT algorithm uses a single classifier to detect the target, and if the selected region drifts, the classifier may become inaccurate. Furthermore, the CT algorithm updates the classifier parameters with a constant learning rate. Therefore, if the target is completely occluded for an extended period, the classifier will instead learn the features of the covered object and the target will ultimately be lost. To overcome these problems, we present a compressive sensing tracking algorithm using mixed classifier decision. The main improvements in our algorithm are that it adopts mixed classifiers to locate the target and it applies a dynamic learning rate to update the appearance model. An experimental comparison with state-of-the-art algorithms on eight benchmark video sequences in complicated situations shows that the proposed algorithm achieves the best performance with 12 pixels on the average center location error and 66.82% on the average overlap score.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-015-5424-5</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-733X |
ispartof | Science China. Information sciences, 2016-07, Vol.59 (7), p.139-153, Article 072102 |
issn | 1674-733X 1869-1919 |
language | eng |
recordid | cdi_proquest_journals_2918623709 |
source | Springer Link |
subjects | Algorithms Classifiers Computer Science CT算法 Information Systems and Communication Service Research Paper Target detection Tracking 位置误差 分类决策 分类器 压缩域 感知 混合 跟踪检测 |
title | Efficient compressive sensing tracking via mixed classifier decision |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20compressive%20sensing%20tracking%20via%20mixed%20classifier%20decision&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Sun,%20Hang&rft.date=2016-07-01&rft.volume=59&rft.issue=7&rft.spage=139&rft.epage=153&rft.pages=139-153&rft.artnum=072102&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-015-5424-5&rft_dat=%3Cproquest_cross%3E2918623709%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918623709&rft_id=info:pmid/&rft_cqvip_id=669375525&rfr_iscdi=true |