Loading…

Efficient compressive sensing tracking via mixed classifier decision

Recent years have witnessed successful use of tracking-by-detection methods, with a number of promising results being achieved. Most of these algorithms use a sliding window to collect samples and then employ these samples to train and update the classifiers. They also use an updated classifier to e...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Information sciences 2016-07, Vol.59 (7), p.139-153, Article 072102
Main Authors: Sun, Hang, Li, Jing, Chang, Jun, Du, Bo, Su, Zhenyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43
cites cdi_FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43
container_end_page 153
container_issue 7
container_start_page 139
container_title Science China. Information sciences
container_volume 59
creator Sun, Hang
Li, Jing
Chang, Jun
Du, Bo
Su, Zhenyang
description Recent years have witnessed successful use of tracking-by-detection methods, with a number of promising results being achieved. Most of these algorithms use a sliding window to collect samples and then employ these samples to train and update the classifiers. They also use an updated classifier to establish the appearance model and they take the maximum response value of the classifier as the location of the target within a fixed radius. Compressive Tracking (CT) is a novel tracking-by-detection algorithm that updates the appearance model in a compressed domain. However, the conventional CT algorithm uses a single classifier to detect the target, and if the selected region drifts, the classifier may become inaccurate. Furthermore, the CT algorithm updates the classifier parameters with a constant learning rate. Therefore, if the target is completely occluded for an extended period, the classifier will instead learn the features of the covered object and the target will ultimately be lost. To overcome these problems, we present a compressive sensing tracking algorithm using mixed classifier decision. The main improvements in our algorithm are that it adopts mixed classifiers to locate the target and it applies a dynamic learning rate to update the appearance model. An experimental comparison with state-of-the-art algorithms on eight benchmark video sequences in complicated situations shows that the proposed algorithm achieves the best performance with 12 pixels on the average center location error and 66.82% on the average overlap score.
doi_str_mv 10.1007/s11432-015-5424-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918623709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669375525</cqvip_id><sourcerecordid>2918623709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWGo_gLdFz9Ekk8fmKLU-oOBFwVvYzSY1td1tk23Rb2_KFr05l5nD_8H8ELqk5IYSom4TpRwYJlRgwRnH4gSNaCk1pprq03xLxbECeD9Hk5SWJA8AYaocofuZ98EG1_aF7dab6FIKe1ck16bQLoo-VvbzcOxDVazDl2sKu6qyxgcXi8bZkELXXqAzX62Smxz3GL09zF6nT3j-8vg8vZtjC6XssSit56rWJVe04dA4TnRTc8oqQr0nwBtqmdW1Z4pIzYA5UisoQZaUVOA4jNH1kLuJ3XbnUm-W3S62udIwnR9moIjOKjqobOxSis6bTQzrKn4bSsyBlxl4mczLHHgZkT1s8KSsbRcu_iX_Z7o6Fn107WKbfb9NUmpQQjABP4bfd8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918623709</pqid></control><display><type>article</type><title>Efficient compressive sensing tracking via mixed classifier decision</title><source>Springer Link</source><creator>Sun, Hang ; Li, Jing ; Chang, Jun ; Du, Bo ; Su, Zhenyang</creator><creatorcontrib>Sun, Hang ; Li, Jing ; Chang, Jun ; Du, Bo ; Su, Zhenyang</creatorcontrib><description>Recent years have witnessed successful use of tracking-by-detection methods, with a number of promising results being achieved. Most of these algorithms use a sliding window to collect samples and then employ these samples to train and update the classifiers. They also use an updated classifier to establish the appearance model and they take the maximum response value of the classifier as the location of the target within a fixed radius. Compressive Tracking (CT) is a novel tracking-by-detection algorithm that updates the appearance model in a compressed domain. However, the conventional CT algorithm uses a single classifier to detect the target, and if the selected region drifts, the classifier may become inaccurate. Furthermore, the CT algorithm updates the classifier parameters with a constant learning rate. Therefore, if the target is completely occluded for an extended period, the classifier will instead learn the features of the covered object and the target will ultimately be lost. To overcome these problems, we present a compressive sensing tracking algorithm using mixed classifier decision. The main improvements in our algorithm are that it adopts mixed classifiers to locate the target and it applies a dynamic learning rate to update the appearance model. An experimental comparison with state-of-the-art algorithms on eight benchmark video sequences in complicated situations shows that the proposed algorithm achieves the best performance with 12 pixels on the average center location error and 66.82% on the average overlap score.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-015-5424-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Algorithms ; Classifiers ; Computer Science ; CT算法 ; Information Systems and Communication Service ; Research Paper ; Target detection ; Tracking ; 位置误差 ; 分类决策 ; 分类器 ; 压缩域 ; 感知 ; 混合 ; 跟踪检测</subject><ispartof>Science China. Information sciences, 2016-07, Vol.59 (7), p.139-153, Article 072102</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43</citedby><cites>FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sun, Hang</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Chang, Jun</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Su, Zhenyang</creatorcontrib><title>Efficient compressive sensing tracking via mixed classifier decision</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>Recent years have witnessed successful use of tracking-by-detection methods, with a number of promising results being achieved. Most of these algorithms use a sliding window to collect samples and then employ these samples to train and update the classifiers. They also use an updated classifier to establish the appearance model and they take the maximum response value of the classifier as the location of the target within a fixed radius. Compressive Tracking (CT) is a novel tracking-by-detection algorithm that updates the appearance model in a compressed domain. However, the conventional CT algorithm uses a single classifier to detect the target, and if the selected region drifts, the classifier may become inaccurate. Furthermore, the CT algorithm updates the classifier parameters with a constant learning rate. Therefore, if the target is completely occluded for an extended period, the classifier will instead learn the features of the covered object and the target will ultimately be lost. To overcome these problems, we present a compressive sensing tracking algorithm using mixed classifier decision. The main improvements in our algorithm are that it adopts mixed classifiers to locate the target and it applies a dynamic learning rate to update the appearance model. An experimental comparison with state-of-the-art algorithms on eight benchmark video sequences in complicated situations shows that the proposed algorithm achieves the best performance with 12 pixels on the average center location error and 66.82% on the average overlap score.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Computer Science</subject><subject>CT算法</subject><subject>Information Systems and Communication Service</subject><subject>Research Paper</subject><subject>Target detection</subject><subject>Tracking</subject><subject>位置误差</subject><subject>分类决策</subject><subject>分类器</subject><subject>压缩域</subject><subject>感知</subject><subject>混合</subject><subject>跟踪检测</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWGo_gLdFz9Ekk8fmKLU-oOBFwVvYzSY1td1tk23Rb2_KFr05l5nD_8H8ELqk5IYSom4TpRwYJlRgwRnH4gSNaCk1pprq03xLxbECeD9Hk5SWJA8AYaocofuZ98EG1_aF7dab6FIKe1ck16bQLoo-VvbzcOxDVazDl2sKu6qyxgcXi8bZkELXXqAzX62Smxz3GL09zF6nT3j-8vg8vZtjC6XssSit56rWJVe04dA4TnRTc8oqQr0nwBtqmdW1Z4pIzYA5UisoQZaUVOA4jNH1kLuJ3XbnUm-W3S62udIwnR9moIjOKjqobOxSis6bTQzrKn4bSsyBlxl4mczLHHgZkT1s8KSsbRcu_iX_Z7o6Fn107WKbfb9NUmpQQjABP4bfd8c</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Sun, Hang</creator><creator>Li, Jing</creator><creator>Chang, Jun</creator><creator>Du, Bo</creator><creator>Su, Zhenyang</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160701</creationdate><title>Efficient compressive sensing tracking via mixed classifier decision</title><author>Sun, Hang ; Li, Jing ; Chang, Jun ; Du, Bo ; Su, Zhenyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Computer Science</topic><topic>CT算法</topic><topic>Information Systems and Communication Service</topic><topic>Research Paper</topic><topic>Target detection</topic><topic>Tracking</topic><topic>位置误差</topic><topic>分类决策</topic><topic>分类器</topic><topic>压缩域</topic><topic>感知</topic><topic>混合</topic><topic>跟踪检测</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Hang</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Chang, Jun</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Su, Zhenyang</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Hang</au><au>Li, Jing</au><au>Chang, Jun</au><au>Du, Bo</au><au>Su, Zhenyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient compressive sensing tracking via mixed classifier decision</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>59</volume><issue>7</issue><spage>139</spage><epage>153</epage><pages>139-153</pages><artnum>072102</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>Recent years have witnessed successful use of tracking-by-detection methods, with a number of promising results being achieved. Most of these algorithms use a sliding window to collect samples and then employ these samples to train and update the classifiers. They also use an updated classifier to establish the appearance model and they take the maximum response value of the classifier as the location of the target within a fixed radius. Compressive Tracking (CT) is a novel tracking-by-detection algorithm that updates the appearance model in a compressed domain. However, the conventional CT algorithm uses a single classifier to detect the target, and if the selected region drifts, the classifier may become inaccurate. Furthermore, the CT algorithm updates the classifier parameters with a constant learning rate. Therefore, if the target is completely occluded for an extended period, the classifier will instead learn the features of the covered object and the target will ultimately be lost. To overcome these problems, we present a compressive sensing tracking algorithm using mixed classifier decision. The main improvements in our algorithm are that it adopts mixed classifiers to locate the target and it applies a dynamic learning rate to update the appearance model. An experimental comparison with state-of-the-art algorithms on eight benchmark video sequences in complicated situations shows that the proposed algorithm achieves the best performance with 12 pixels on the average center location error and 66.82% on the average overlap score.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-015-5424-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2016-07, Vol.59 (7), p.139-153, Article 072102
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_journals_2918623709
source Springer Link
subjects Algorithms
Classifiers
Computer Science
CT算法
Information Systems and Communication Service
Research Paper
Target detection
Tracking
位置误差
分类决策
分类器
压缩域
感知
混合
跟踪检测
title Efficient compressive sensing tracking via mixed classifier decision
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20compressive%20sensing%20tracking%20via%20mixed%20classifier%20decision&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Sun,%20Hang&rft.date=2016-07-01&rft.volume=59&rft.issue=7&rft.spage=139&rft.epage=153&rft.pages=139-153&rft.artnum=072102&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-015-5424-5&rft_dat=%3Cproquest_cross%3E2918623709%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-58cf47b98471d43de409db412a01ff034d1c2c9bf27069232e0b73836810a3e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918623709&rft_id=info:pmid/&rft_cqvip_id=669375525&rfr_iscdi=true