Loading…

On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems

This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed t...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms 2022-10, Vol.91 (2), p.933-957
Main Authors: Prado, Renan W., Santos, Sandra A., Simões, Lucas E. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93
cites cdi_FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93
container_end_page 957
container_issue 2
container_start_page 933
container_title Numerical algorithms
container_volume 91
creator Prado, Renan W.
Santos, Sandra A.
Simões, Lucas E. A.
description This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved.
doi_str_mv 10.1007/s11075-022-01287-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918626782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918626782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRUKt_wFPAczSZbfbjKOIXFHrRc8hmJ90tu8maxNJ69JebWsGbp0zged5h3iy74uyGM1beBs5ZKSgDoIxDVdLtUXbGRQm0hkIcp5nxkvK8rk6z8xDWjCUNyrPsa2lJ7JBoZzfoV2g1EmXVsAt9IM4QRSZM37gjalg538duJMZ5Yp0No3OxI26K_dh_qtg7m9SW9DEkySdqVPu4PR7csOntinTKtzRMHXokk3fNgGO4yE6MGgJe_r6z7O3x4fX-mS6WTy_3dwuqYV5HqppGQ44KsBKaK6GxECB4ga0B1kDLW6FN3tRGG5O3uhHCaGgbMzcNamHqfJZdH3LT4vcPDFGu3YdPxwUJNa8KKMoKEgUHSnsXgkcjJ9-Pyu8kZ3LftTx0LVPX8qdruU1SfpBCgu0K_V_0P9Y3iAaHuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918626782</pqid></control><display><type>article</type><title>On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems</title><source>Springer Link</source><creator>Prado, Renan W. ; Santos, Sandra A. ; Simões, Lucas E. A.</creator><creatorcontrib>Prado, Renan W. ; Santos, Sandra A. ; Simões, Lucas E. A.</creatorcontrib><description>This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-022-01287-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Convergence ; Mathematical programming ; Numeric Computing ; Numerical Analysis ; Optimization ; Original Paper ; Theory of Computation</subject><ispartof>Numerical algorithms, 2022-10, Vol.91 (2), p.933-957</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93</citedby><cites>FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93</cites><orcidid>0000-0002-2305-3565 ; 0000-0002-6250-0137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Prado, Renan W.</creatorcontrib><creatorcontrib>Santos, Sandra A.</creatorcontrib><creatorcontrib>Simões, Lucas E. A.</creatorcontrib><title>On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Mathematical programming</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRUKt_wFPAczSZbfbjKOIXFHrRc8hmJ90tu8maxNJ69JebWsGbp0zged5h3iy74uyGM1beBs5ZKSgDoIxDVdLtUXbGRQm0hkIcp5nxkvK8rk6z8xDWjCUNyrPsa2lJ7JBoZzfoV2g1EmXVsAt9IM4QRSZM37gjalg538duJMZ5Yp0No3OxI26K_dh_qtg7m9SW9DEkySdqVPu4PR7csOntinTKtzRMHXokk3fNgGO4yE6MGgJe_r6z7O3x4fX-mS6WTy_3dwuqYV5HqppGQ44KsBKaK6GxECB4ga0B1kDLW6FN3tRGG5O3uhHCaGgbMzcNamHqfJZdH3LT4vcPDFGu3YdPxwUJNa8KKMoKEgUHSnsXgkcjJ9-Pyu8kZ3LftTx0LVPX8qdruU1SfpBCgu0K_V_0P9Y3iAaHuA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Prado, Renan W.</creator><creator>Santos, Sandra A.</creator><creator>Simões, Lucas E. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2305-3565</orcidid><orcidid>https://orcid.org/0000-0002-6250-0137</orcidid></search><sort><creationdate>20221001</creationdate><title>On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems</title><author>Prado, Renan W. ; Santos, Sandra A. ; Simões, Lucas E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Mathematical programming</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prado, Renan W.</creatorcontrib><creatorcontrib>Santos, Sandra A.</creatorcontrib><creatorcontrib>Simões, Lucas E. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prado, Renan W.</au><au>Santos, Sandra A.</au><au>Simões, Lucas E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>91</volume><issue>2</issue><spage>933</spage><epage>957</epage><pages>933-957</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-022-01287-x</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-2305-3565</orcidid><orcidid>https://orcid.org/0000-0002-6250-0137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2022-10, Vol.91 (2), p.933-957
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918626782
source Springer Link
subjects Algebra
Algorithms
Computer Science
Convergence
Mathematical programming
Numeric Computing
Numerical Analysis
Optimization
Original Paper
Theory of Computation
title On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20convergence%20analysis%20of%20a%20penalty%20algorithm%20for%20nonsmooth%20optimization%20and%20its%20performance%20for%20solving%20hard-sphere%20problems&rft.jtitle=Numerical%20algorithms&rft.au=Prado,%20Renan%20W.&rft.date=2022-10-01&rft.volume=91&rft.issue=2&rft.spage=933&rft.epage=957&rft.pages=933-957&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-022-01287-x&rft_dat=%3Cproquest_cross%3E2918626782%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918626782&rft_id=info:pmid/&rfr_iscdi=true