Loading…
On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems
This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed t...
Saved in:
Published in: | Numerical algorithms 2022-10, Vol.91 (2), p.933-957 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93 |
container_end_page | 957 |
container_issue | 2 |
container_start_page | 933 |
container_title | Numerical algorithms |
container_volume | 91 |
creator | Prado, Renan W. Santos, Sandra A. Simões, Lucas E. A. |
description | This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved. |
doi_str_mv | 10.1007/s11075-022-01287-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918626782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918626782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRUKt_wFPAczSZbfbjKOIXFHrRc8hmJ90tu8maxNJ69JebWsGbp0zged5h3iy74uyGM1beBs5ZKSgDoIxDVdLtUXbGRQm0hkIcp5nxkvK8rk6z8xDWjCUNyrPsa2lJ7JBoZzfoV2g1EmXVsAt9IM4QRSZM37gjalg538duJMZ5Yp0No3OxI26K_dh_qtg7m9SW9DEkySdqVPu4PR7csOntinTKtzRMHXokk3fNgGO4yE6MGgJe_r6z7O3x4fX-mS6WTy_3dwuqYV5HqppGQ44KsBKaK6GxECB4ga0B1kDLW6FN3tRGG5O3uhHCaGgbMzcNamHqfJZdH3LT4vcPDFGu3YdPxwUJNa8KKMoKEgUHSnsXgkcjJ9-Pyu8kZ3LftTx0LVPX8qdruU1SfpBCgu0K_V_0P9Y3iAaHuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918626782</pqid></control><display><type>article</type><title>On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems</title><source>Springer Link</source><creator>Prado, Renan W. ; Santos, Sandra A. ; Simões, Lucas E. A.</creator><creatorcontrib>Prado, Renan W. ; Santos, Sandra A. ; Simões, Lucas E. A.</creatorcontrib><description>This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-022-01287-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Convergence ; Mathematical programming ; Numeric Computing ; Numerical Analysis ; Optimization ; Original Paper ; Theory of Computation</subject><ispartof>Numerical algorithms, 2022-10, Vol.91 (2), p.933-957</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93</citedby><cites>FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93</cites><orcidid>0000-0002-2305-3565 ; 0000-0002-6250-0137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Prado, Renan W.</creatorcontrib><creatorcontrib>Santos, Sandra A.</creatorcontrib><creatorcontrib>Simões, Lucas E. A.</creatorcontrib><title>On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Mathematical programming</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRUKt_wFPAczSZbfbjKOIXFHrRc8hmJ90tu8maxNJ69JebWsGbp0zged5h3iy74uyGM1beBs5ZKSgDoIxDVdLtUXbGRQm0hkIcp5nxkvK8rk6z8xDWjCUNyrPsa2lJ7JBoZzfoV2g1EmXVsAt9IM4QRSZM37gjalg538duJMZ5Yp0No3OxI26K_dh_qtg7m9SW9DEkySdqVPu4PR7csOntinTKtzRMHXokk3fNgGO4yE6MGgJe_r6z7O3x4fX-mS6WTy_3dwuqYV5HqppGQ44KsBKaK6GxECB4ga0B1kDLW6FN3tRGG5O3uhHCaGgbMzcNamHqfJZdH3LT4vcPDFGu3YdPxwUJNa8KKMoKEgUHSnsXgkcjJ9-Pyu8kZ3LftTx0LVPX8qdruU1SfpBCgu0K_V_0P9Y3iAaHuA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Prado, Renan W.</creator><creator>Santos, Sandra A.</creator><creator>Simões, Lucas E. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2305-3565</orcidid><orcidid>https://orcid.org/0000-0002-6250-0137</orcidid></search><sort><creationdate>20221001</creationdate><title>On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems</title><author>Prado, Renan W. ; Santos, Sandra A. ; Simões, Lucas E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Mathematical programming</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prado, Renan W.</creatorcontrib><creatorcontrib>Santos, Sandra A.</creatorcontrib><creatorcontrib>Simões, Lucas E. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prado, Renan W.</au><au>Santos, Sandra A.</au><au>Simões, Lucas E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>91</volume><issue>2</issue><spage>933</spage><epage>957</epage><pages>933-957</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-022-01287-x</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-2305-3565</orcidid><orcidid>https://orcid.org/0000-0002-6250-0137</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2022-10, Vol.91 (2), p.933-957 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918626782 |
source | Springer Link |
subjects | Algebra Algorithms Computer Science Convergence Mathematical programming Numeric Computing Numerical Analysis Optimization Original Paper Theory of Computation |
title | On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20convergence%20analysis%20of%20a%20penalty%20algorithm%20for%20nonsmooth%20optimization%20and%20its%20performance%20for%20solving%20hard-sphere%20problems&rft.jtitle=Numerical%20algorithms&rft.au=Prado,%20Renan%20W.&rft.date=2022-10-01&rft.volume=91&rft.issue=2&rft.spage=933&rft.epage=957&rft.pages=933-957&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-022-01287-x&rft_dat=%3Cproquest_cross%3E2918626782%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-abbc23ea2e85c1a5ce652516edf20b2d1d5cf3b9fcff3dcb55fc2dbf4fbec5f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918626782&rft_id=info:pmid/&rfr_iscdi=true |