Loading…
Comparison of Mg2+- and Ca2+-enhancing anaerobic granulation in an expanded granular sludge-bed reactor
The mechanisms responsible for the fast granulation of anaerobic sludge caused by Mg2+ and Ca2+ addition was examined in four lab-scale expanded granular sludge bed(EGSB) reactors. Results indicated that both Mg2+ and Ca2+ accelerated the sludge-granulation process and increased the amount of polysa...
Saved in:
Published in: | Science China. Chemistry 2014-11, Vol.57 (11), p.1596-1601 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanisms responsible for the fast granulation of anaerobic sludge caused by Mg2+ and Ca2+ addition was examined in four lab-scale expanded granular sludge bed(EGSB) reactors. Results indicated that both Mg2+ and Ca2+ accelerated the sludge-granulation process and increased the amount of polysaccharides and proteins in the sludge. Energy dispersive x-ray spectrometry(EDX) analysis revealed that, in a mature granule, both Mg2+ and Ca2+ composed as phosphate and calcium was distributed primarily in the periphery of the granule, while magnesium distributed mainly in the interior. The addition of Mg2+ was more favorable for the nuclei formation, whereas the addition of Ca2+ was more favorable for subgranule growth and maintaining the granules’ rigid structure. Results showed that the addition of Mg2+ in the nuclei formation stage and Ca2+ in the granule-growth stage accelerated granulation more than adding only one of them in the granulation process. |
---|---|
ISSN: | 1674-7291 1869-1870 |
DOI: | 10.1007/s11426-014-5197-5 |