Loading…

Experimental measurement of bipartite entanglement using parameterized quantum circuits

Entanglement in quantum systems plays a crucial role in various quantum information tasks. Measuring entanglement has been an important issue in both experiments and theories. In this work, we use parameterized quantum circuits (PQCs) to diagonalize density matrices of quantum states and obtain enta...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2022-08, Vol.65 (8), p.280312, Article 280312
Main Authors: Xue, Shunzhong, Huang, Yulei, Zhao, Dafa, Wei, Chao, Li, Jun, Dong, Ying, Gao, Jiancun, Lu, Dawei, Xin, Tao, Long, Gui-Lu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83
cites cdi_FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83
container_end_page
container_issue 8
container_start_page 280312
container_title Science China. Physics, mechanics & astronomy
container_volume 65
creator Xue, Shunzhong
Huang, Yulei
Zhao, Dafa
Wei, Chao
Li, Jun
Dong, Ying
Gao, Jiancun
Lu, Dawei
Xin, Tao
Long, Gui-Lu
description Entanglement in quantum systems plays a crucial role in various quantum information tasks. Measuring entanglement has been an important issue in both experiments and theories. In this work, we use parameterized quantum circuits (PQCs) to diagonalize density matrices of quantum states and obtain entanglement by only measuring the diagonal elements. With this method, full quantum state tomography can be bypassed, greatly reducing the number of measurements. A comprehensive characterization of entanglement was performed by using Rényi entropy and partially transposed moments. Mutual information, calculated from entropy is also used to characterize dynamical quantum phase transitions. We experimentally demonstrated the method on a four-qubit nuclear magnetic resonance quantum simulator. Our results agree with the theoretical descriptions. The measurement complexity of our PQC-based method grows linearly with the number of diagonal elements in the density matrix, a square root reduction over the full quantum tomography. The proposed method can have great potential in quantum systems with a large number of particles.
doi_str_mv 10.1007/s11433-022-1904-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918628127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728182796</galeid><sourcerecordid>A728182796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYsoOOj8AHcF1x3zaJt0OQzjAwbcKC7DbZqUDH1NkoL6671DBVcmi-TknC8JJ0nuKNlQQsRDoDTnPCOMZbQiecYvkhWVZYWKiUvclyLPBM_ldbIO4UhwcMyJfJV87D8n411vhghd2hsIszdnlY42rd0EPrpo0rM9tN3izMENbYoW9CYi_G2a9DTDEOc-1c7r2cVwm1xZ6IJZ_643yfvj_m33nB1en15220OmeVHETNKaQCFqkLQsjdamESiAgyyBEp7bSmoiqhyEBMtrVjECTWErq2tiCyv5TXK_3Dv58TSbENVxnP2ATypWYQdMUiYwtVlSLXRGucGO0YPG2Zje6XEw1uH5VmBaMlGVCNAF0H4MwRurJiwJ_JeiRJ07V0vnCjtX584VR4YtTMDs0Br_95X_oR-mkYXB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918628127</pqid></control><display><type>article</type><title>Experimental measurement of bipartite entanglement using parameterized quantum circuits</title><source>Springer Nature</source><creator>Xue, Shunzhong ; Huang, Yulei ; Zhao, Dafa ; Wei, Chao ; Li, Jun ; Dong, Ying ; Gao, Jiancun ; Lu, Dawei ; Xin, Tao ; Long, Gui-Lu</creator><creatorcontrib>Xue, Shunzhong ; Huang, Yulei ; Zhao, Dafa ; Wei, Chao ; Li, Jun ; Dong, Ying ; Gao, Jiancun ; Lu, Dawei ; Xin, Tao ; Long, Gui-Lu</creatorcontrib><description>Entanglement in quantum systems plays a crucial role in various quantum information tasks. Measuring entanglement has been an important issue in both experiments and theories. In this work, we use parameterized quantum circuits (PQCs) to diagonalize density matrices of quantum states and obtain entanglement by only measuring the diagonal elements. With this method, full quantum state tomography can be bypassed, greatly reducing the number of measurements. A comprehensive characterization of entanglement was performed by using Rényi entropy and partially transposed moments. Mutual information, calculated from entropy is also used to characterize dynamical quantum phase transitions. We experimentally demonstrated the method on a four-qubit nuclear magnetic resonance quantum simulator. Our results agree with the theoretical descriptions. The measurement complexity of our PQC-based method grows linearly with the number of diagonal elements in the density matrix, a square root reduction over the full quantum tomography. The proposed method can have great potential in quantum systems with a large number of particles.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-022-1904-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Astronomy ; Atoms ; Circuits ; Classical and Continuum Physics ; Density ; Entropy ; Entropy (Information theory) ; Integrated circuits ; Measurement ; NMR ; Nuclear magnetic resonance ; Observations and Techniques ; Parameterization ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum entanglement ; Quantum phenomena ; Qubits (quantum computing) ; Semiconductor chips ; Specific gravity ; Tomography</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2022-08, Vol.65 (8), p.280312, Article 280312</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83</citedby><cites>FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xue, Shunzhong</creatorcontrib><creatorcontrib>Huang, Yulei</creatorcontrib><creatorcontrib>Zhao, Dafa</creatorcontrib><creatorcontrib>Wei, Chao</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Dong, Ying</creatorcontrib><creatorcontrib>Gao, Jiancun</creatorcontrib><creatorcontrib>Lu, Dawei</creatorcontrib><creatorcontrib>Xin, Tao</creatorcontrib><creatorcontrib>Long, Gui-Lu</creatorcontrib><title>Experimental measurement of bipartite entanglement using parameterized quantum circuits</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>Entanglement in quantum systems plays a crucial role in various quantum information tasks. Measuring entanglement has been an important issue in both experiments and theories. In this work, we use parameterized quantum circuits (PQCs) to diagonalize density matrices of quantum states and obtain entanglement by only measuring the diagonal elements. With this method, full quantum state tomography can be bypassed, greatly reducing the number of measurements. A comprehensive characterization of entanglement was performed by using Rényi entropy and partially transposed moments. Mutual information, calculated from entropy is also used to characterize dynamical quantum phase transitions. We experimentally demonstrated the method on a four-qubit nuclear magnetic resonance quantum simulator. Our results agree with the theoretical descriptions. The measurement complexity of our PQC-based method grows linearly with the number of diagonal elements in the density matrix, a square root reduction over the full quantum tomography. The proposed method can have great potential in quantum systems with a large number of particles.</description><subject>Astronomy</subject><subject>Atoms</subject><subject>Circuits</subject><subject>Classical and Continuum Physics</subject><subject>Density</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Integrated circuits</subject><subject>Measurement</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Observations and Techniques</subject><subject>Parameterization</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Semiconductor chips</subject><subject>Specific gravity</subject><subject>Tomography</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYsoOOj8AHcF1x3zaJt0OQzjAwbcKC7DbZqUDH1NkoL6671DBVcmi-TknC8JJ0nuKNlQQsRDoDTnPCOMZbQiecYvkhWVZYWKiUvclyLPBM_ldbIO4UhwcMyJfJV87D8n411vhghd2hsIszdnlY42rd0EPrpo0rM9tN3izMENbYoW9CYi_G2a9DTDEOc-1c7r2cVwm1xZ6IJZ_643yfvj_m33nB1en15220OmeVHETNKaQCFqkLQsjdamESiAgyyBEp7bSmoiqhyEBMtrVjECTWErq2tiCyv5TXK_3Dv58TSbENVxnP2ATypWYQdMUiYwtVlSLXRGucGO0YPG2Zje6XEw1uH5VmBaMlGVCNAF0H4MwRurJiwJ_JeiRJ07V0vnCjtX584VR4YtTMDs0Br_95X_oR-mkYXB</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Xue, Shunzhong</creator><creator>Huang, Yulei</creator><creator>Zhao, Dafa</creator><creator>Wei, Chao</creator><creator>Li, Jun</creator><creator>Dong, Ying</creator><creator>Gao, Jiancun</creator><creator>Lu, Dawei</creator><creator>Xin, Tao</creator><creator>Long, Gui-Lu</creator><general>Science China Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220801</creationdate><title>Experimental measurement of bipartite entanglement using parameterized quantum circuits</title><author>Xue, Shunzhong ; Huang, Yulei ; Zhao, Dafa ; Wei, Chao ; Li, Jun ; Dong, Ying ; Gao, Jiancun ; Lu, Dawei ; Xin, Tao ; Long, Gui-Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomy</topic><topic>Atoms</topic><topic>Circuits</topic><topic>Classical and Continuum Physics</topic><topic>Density</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Integrated circuits</topic><topic>Measurement</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Observations and Techniques</topic><topic>Parameterization</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Semiconductor chips</topic><topic>Specific gravity</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Shunzhong</creatorcontrib><creatorcontrib>Huang, Yulei</creatorcontrib><creatorcontrib>Zhao, Dafa</creatorcontrib><creatorcontrib>Wei, Chao</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Dong, Ying</creatorcontrib><creatorcontrib>Gao, Jiancun</creatorcontrib><creatorcontrib>Lu, Dawei</creatorcontrib><creatorcontrib>Xin, Tao</creatorcontrib><creatorcontrib>Long, Gui-Lu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Shunzhong</au><au>Huang, Yulei</au><au>Zhao, Dafa</au><au>Wei, Chao</au><au>Li, Jun</au><au>Dong, Ying</au><au>Gao, Jiancun</au><au>Lu, Dawei</au><au>Xin, Tao</au><au>Long, Gui-Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental measurement of bipartite entanglement using parameterized quantum circuits</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>65</volume><issue>8</issue><spage>280312</spage><pages>280312-</pages><artnum>280312</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>Entanglement in quantum systems plays a crucial role in various quantum information tasks. Measuring entanglement has been an important issue in both experiments and theories. In this work, we use parameterized quantum circuits (PQCs) to diagonalize density matrices of quantum states and obtain entanglement by only measuring the diagonal elements. With this method, full quantum state tomography can be bypassed, greatly reducing the number of measurements. A comprehensive characterization of entanglement was performed by using Rényi entropy and partially transposed moments. Mutual information, calculated from entropy is also used to characterize dynamical quantum phase transitions. We experimentally demonstrated the method on a four-qubit nuclear magnetic resonance quantum simulator. Our results agree with the theoretical descriptions. The measurement complexity of our PQC-based method grows linearly with the number of diagonal elements in the density matrix, a square root reduction over the full quantum tomography. The proposed method can have great potential in quantum systems with a large number of particles.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-022-1904-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2022-08, Vol.65 (8), p.280312, Article 280312
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_journals_2918628127
source Springer Nature
subjects Astronomy
Atoms
Circuits
Classical and Continuum Physics
Density
Entropy
Entropy (Information theory)
Integrated circuits
Measurement
NMR
Nuclear magnetic resonance
Observations and Techniques
Parameterization
Phase transitions
Physics
Physics and Astronomy
Quantum entanglement
Quantum phenomena
Qubits (quantum computing)
Semiconductor chips
Specific gravity
Tomography
title Experimental measurement of bipartite entanglement using parameterized quantum circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20measurement%20of%20bipartite%20entanglement%20using%20parameterized%20quantum%20circuits&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Xue,%20Shunzhong&rft.date=2022-08-01&rft.volume=65&rft.issue=8&rft.spage=280312&rft.pages=280312-&rft.artnum=280312&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-022-1904-3&rft_dat=%3Cgale_proqu%3EA728182796%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918628127&rft_id=info:pmid/&rft_galeid=A728182796&rfr_iscdi=true