Loading…
Experimental measurement of bipartite entanglement using parameterized quantum circuits
Entanglement in quantum systems plays a crucial role in various quantum information tasks. Measuring entanglement has been an important issue in both experiments and theories. In this work, we use parameterized quantum circuits (PQCs) to diagonalize density matrices of quantum states and obtain enta...
Saved in:
Published in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2022-08, Vol.65 (8), p.280312, Article 280312 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83 |
container_end_page | |
container_issue | 8 |
container_start_page | 280312 |
container_title | Science China. Physics, mechanics & astronomy |
container_volume | 65 |
creator | Xue, Shunzhong Huang, Yulei Zhao, Dafa Wei, Chao Li, Jun Dong, Ying Gao, Jiancun Lu, Dawei Xin, Tao Long, Gui-Lu |
description | Entanglement in quantum systems plays a crucial role in various quantum information tasks. Measuring entanglement has been an important issue in both experiments and theories. In this work, we use parameterized quantum circuits (PQCs) to diagonalize density matrices of quantum states and obtain entanglement by only measuring the diagonal elements. With this method, full quantum state tomography can be bypassed, greatly reducing the number of measurements. A comprehensive characterization of entanglement was performed by using Rényi entropy and partially transposed moments. Mutual information, calculated from entropy is also used to characterize dynamical quantum phase transitions. We experimentally demonstrated the method on a four-qubit nuclear magnetic resonance quantum simulator. Our results agree with the theoretical descriptions. The measurement complexity of our PQC-based method grows linearly with the number of diagonal elements in the density matrix, a square root reduction over the full quantum tomography. The proposed method can have great potential in quantum systems with a large number of particles. |
doi_str_mv | 10.1007/s11433-022-1904-3 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918628127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728182796</galeid><sourcerecordid>A728182796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYsoOOj8AHcF1x3zaJt0OQzjAwbcKC7DbZqUDH1NkoL6671DBVcmi-TknC8JJ0nuKNlQQsRDoDTnPCOMZbQiecYvkhWVZYWKiUvclyLPBM_ldbIO4UhwcMyJfJV87D8n411vhghd2hsIszdnlY42rd0EPrpo0rM9tN3izMENbYoW9CYi_G2a9DTDEOc-1c7r2cVwm1xZ6IJZ_643yfvj_m33nB1en15220OmeVHETNKaQCFqkLQsjdamESiAgyyBEp7bSmoiqhyEBMtrVjECTWErq2tiCyv5TXK_3Dv58TSbENVxnP2ATypWYQdMUiYwtVlSLXRGucGO0YPG2Zje6XEw1uH5VmBaMlGVCNAF0H4MwRurJiwJ_JeiRJ07V0vnCjtX584VR4YtTMDs0Br_95X_oR-mkYXB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918628127</pqid></control><display><type>article</type><title>Experimental measurement of bipartite entanglement using parameterized quantum circuits</title><source>Springer Nature</source><creator>Xue, Shunzhong ; Huang, Yulei ; Zhao, Dafa ; Wei, Chao ; Li, Jun ; Dong, Ying ; Gao, Jiancun ; Lu, Dawei ; Xin, Tao ; Long, Gui-Lu</creator><creatorcontrib>Xue, Shunzhong ; Huang, Yulei ; Zhao, Dafa ; Wei, Chao ; Li, Jun ; Dong, Ying ; Gao, Jiancun ; Lu, Dawei ; Xin, Tao ; Long, Gui-Lu</creatorcontrib><description>Entanglement in quantum systems plays a crucial role in various quantum information tasks. Measuring entanglement has been an important issue in both experiments and theories. In this work, we use parameterized quantum circuits (PQCs) to diagonalize density matrices of quantum states and obtain entanglement by only measuring the diagonal elements. With this method, full quantum state tomography can be bypassed, greatly reducing the number of measurements. A comprehensive characterization of entanglement was performed by using Rényi entropy and partially transposed moments. Mutual information, calculated from entropy is also used to characterize dynamical quantum phase transitions. We experimentally demonstrated the method on a four-qubit nuclear magnetic resonance quantum simulator. Our results agree with the theoretical descriptions. The measurement complexity of our PQC-based method grows linearly with the number of diagonal elements in the density matrix, a square root reduction over the full quantum tomography. The proposed method can have great potential in quantum systems with a large number of particles.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-022-1904-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Astronomy ; Atoms ; Circuits ; Classical and Continuum Physics ; Density ; Entropy ; Entropy (Information theory) ; Integrated circuits ; Measurement ; NMR ; Nuclear magnetic resonance ; Observations and Techniques ; Parameterization ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum entanglement ; Quantum phenomena ; Qubits (quantum computing) ; Semiconductor chips ; Specific gravity ; Tomography</subject><ispartof>Science China. Physics, mechanics & astronomy, 2022-08, Vol.65 (8), p.280312, Article 280312</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83</citedby><cites>FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xue, Shunzhong</creatorcontrib><creatorcontrib>Huang, Yulei</creatorcontrib><creatorcontrib>Zhao, Dafa</creatorcontrib><creatorcontrib>Wei, Chao</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Dong, Ying</creatorcontrib><creatorcontrib>Gao, Jiancun</creatorcontrib><creatorcontrib>Lu, Dawei</creatorcontrib><creatorcontrib>Xin, Tao</creatorcontrib><creatorcontrib>Long, Gui-Lu</creatorcontrib><title>Experimental measurement of bipartite entanglement using parameterized quantum circuits</title><title>Science China. Physics, mechanics & astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>Entanglement in quantum systems plays a crucial role in various quantum information tasks. Measuring entanglement has been an important issue in both experiments and theories. In this work, we use parameterized quantum circuits (PQCs) to diagonalize density matrices of quantum states and obtain entanglement by only measuring the diagonal elements. With this method, full quantum state tomography can be bypassed, greatly reducing the number of measurements. A comprehensive characterization of entanglement was performed by using Rényi entropy and partially transposed moments. Mutual information, calculated from entropy is also used to characterize dynamical quantum phase transitions. We experimentally demonstrated the method on a four-qubit nuclear magnetic resonance quantum simulator. Our results agree with the theoretical descriptions. The measurement complexity of our PQC-based method grows linearly with the number of diagonal elements in the density matrix, a square root reduction over the full quantum tomography. The proposed method can have great potential in quantum systems with a large number of particles.</description><subject>Astronomy</subject><subject>Atoms</subject><subject>Circuits</subject><subject>Classical and Continuum Physics</subject><subject>Density</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Integrated circuits</subject><subject>Measurement</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Observations and Techniques</subject><subject>Parameterization</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Semiconductor chips</subject><subject>Specific gravity</subject><subject>Tomography</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYsoOOj8AHcF1x3zaJt0OQzjAwbcKC7DbZqUDH1NkoL6671DBVcmi-TknC8JJ0nuKNlQQsRDoDTnPCOMZbQiecYvkhWVZYWKiUvclyLPBM_ldbIO4UhwcMyJfJV87D8n411vhghd2hsIszdnlY42rd0EPrpo0rM9tN3izMENbYoW9CYi_G2a9DTDEOc-1c7r2cVwm1xZ6IJZ_643yfvj_m33nB1en15220OmeVHETNKaQCFqkLQsjdamESiAgyyBEp7bSmoiqhyEBMtrVjECTWErq2tiCyv5TXK_3Dv58TSbENVxnP2ATypWYQdMUiYwtVlSLXRGucGO0YPG2Zje6XEw1uH5VmBaMlGVCNAF0H4MwRurJiwJ_JeiRJ07V0vnCjtX584VR4YtTMDs0Br_95X_oR-mkYXB</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Xue, Shunzhong</creator><creator>Huang, Yulei</creator><creator>Zhao, Dafa</creator><creator>Wei, Chao</creator><creator>Li, Jun</creator><creator>Dong, Ying</creator><creator>Gao, Jiancun</creator><creator>Lu, Dawei</creator><creator>Xin, Tao</creator><creator>Long, Gui-Lu</creator><general>Science China Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220801</creationdate><title>Experimental measurement of bipartite entanglement using parameterized quantum circuits</title><author>Xue, Shunzhong ; Huang, Yulei ; Zhao, Dafa ; Wei, Chao ; Li, Jun ; Dong, Ying ; Gao, Jiancun ; Lu, Dawei ; Xin, Tao ; Long, Gui-Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomy</topic><topic>Atoms</topic><topic>Circuits</topic><topic>Classical and Continuum Physics</topic><topic>Density</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Integrated circuits</topic><topic>Measurement</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Observations and Techniques</topic><topic>Parameterization</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Semiconductor chips</topic><topic>Specific gravity</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Shunzhong</creatorcontrib><creatorcontrib>Huang, Yulei</creatorcontrib><creatorcontrib>Zhao, Dafa</creatorcontrib><creatorcontrib>Wei, Chao</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Dong, Ying</creatorcontrib><creatorcontrib>Gao, Jiancun</creatorcontrib><creatorcontrib>Lu, Dawei</creatorcontrib><creatorcontrib>Xin, Tao</creatorcontrib><creatorcontrib>Long, Gui-Lu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Science China. Physics, mechanics & astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Shunzhong</au><au>Huang, Yulei</au><au>Zhao, Dafa</au><au>Wei, Chao</au><au>Li, Jun</au><au>Dong, Ying</au><au>Gao, Jiancun</au><au>Lu, Dawei</au><au>Xin, Tao</au><au>Long, Gui-Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental measurement of bipartite entanglement using parameterized quantum circuits</atitle><jtitle>Science China. Physics, mechanics & astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>65</volume><issue>8</issue><spage>280312</spage><pages>280312-</pages><artnum>280312</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>Entanglement in quantum systems plays a crucial role in various quantum information tasks. Measuring entanglement has been an important issue in both experiments and theories. In this work, we use parameterized quantum circuits (PQCs) to diagonalize density matrices of quantum states and obtain entanglement by only measuring the diagonal elements. With this method, full quantum state tomography can be bypassed, greatly reducing the number of measurements. A comprehensive characterization of entanglement was performed by using Rényi entropy and partially transposed moments. Mutual information, calculated from entropy is also used to characterize dynamical quantum phase transitions. We experimentally demonstrated the method on a four-qubit nuclear magnetic resonance quantum simulator. Our results agree with the theoretical descriptions. The measurement complexity of our PQC-based method grows linearly with the number of diagonal elements in the density matrix, a square root reduction over the full quantum tomography. The proposed method can have great potential in quantum systems with a large number of particles.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-022-1904-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7348 |
ispartof | Science China. Physics, mechanics & astronomy, 2022-08, Vol.65 (8), p.280312, Article 280312 |
issn | 1674-7348 1869-1927 |
language | eng |
recordid | cdi_proquest_journals_2918628127 |
source | Springer Nature |
subjects | Astronomy Atoms Circuits Classical and Continuum Physics Density Entropy Entropy (Information theory) Integrated circuits Measurement NMR Nuclear magnetic resonance Observations and Techniques Parameterization Phase transitions Physics Physics and Astronomy Quantum entanglement Quantum phenomena Qubits (quantum computing) Semiconductor chips Specific gravity Tomography |
title | Experimental measurement of bipartite entanglement using parameterized quantum circuits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20measurement%20of%20bipartite%20entanglement%20using%20parameterized%20quantum%20circuits&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Xue,%20Shunzhong&rft.date=2022-08-01&rft.volume=65&rft.issue=8&rft.spage=280312&rft.pages=280312-&rft.artnum=280312&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-022-1904-3&rft_dat=%3Cgale_proqu%3EA728182796%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-81b0a57ba8166ecced77baa3a86a1034f98c0794a78af3b2920ad5f9fcb0f5f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918628127&rft_id=info:pmid/&rft_galeid=A728182796&rfr_iscdi=true |