Loading…
Spatiotemporal variations of eco-environment in the Guangxi Beibu Gulf Economic Zone based on remote sensing ecological index and granular computing
Accurate and rapid evaluation of the regional eco-environment is critical to policy formulation. The remote sensing ecological index (RSEI) model of the Guangxi Beibu Gulf Economic Zone (GBGEZ) during 2001–2020 was established and evaluated using four indices: dryness, wetness, greenness, and heat....
Saved in:
Published in: | Journal of geographical sciences 2022-09, Vol.32 (9), p.1813-1830 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-b4ad4c2473b39a35741adc093f15f0ff1a2cd0f6d6dced17672685688c6902f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-b4ad4c2473b39a35741adc093f15f0ff1a2cd0f6d6dced17672685688c6902f83 |
container_end_page | 1830 |
container_issue | 9 |
container_start_page | 1813 |
container_title | Journal of geographical sciences |
container_volume | 32 |
creator | Liao, Weihua Jiang, Weiguo Huang, Ziqian |
description | Accurate and rapid evaluation of the regional eco-environment is critical to policy formulation. The remote sensing ecological index (RSEI) model of the Guangxi Beibu Gulf Economic Zone (GBGEZ) during 2001–2020 was established and evaluated using four indices: dryness, wetness, greenness, and heat. This paper proposes an information granulation method for remote sensing based on the RSEI index value that uses granular computing. We found that: (1) From 2001 to 2020, the eco-environmental quality (EEQ) of GBGEZ tended to improve, and the spatial difference tended to expand. The regional spatial distribution of the eco-environment is primarily in the second-level and third-level areas, and the EEQ in the east and west is better than that in the middle. The contribution of greenness, wetness, and dryness to the improvement of EEQ in the study region increased year by year. (2) From 2001 to 2020, the order of the contribution of the EEQ index in the GBGEZ was dryness, wetness, greenness, and heat. (3) The social and economic activities in the study region had a certain inhibitory effect on the improvement of the EEQ. |
doi_str_mv | 10.1007/s11442-022-2024-3 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918641236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715979425</galeid><sourcerecordid>A715979425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-b4ad4c2473b39a35741adc093f15f0ff1a2cd0f6d6dced17672685688c6902f83</originalsourceid><addsrcrecordid>eNp1Uc1KHjEUHYpCre0DdBfoOpq_yUyWVtQKggstiJuQL7mZRmaSMZkR-x4-cPMxQleSxc29nHPuz2ma75ScUEK600KpEAwTxjAjTGD-qTmivaRYtbI_qH9CFJa8e_jcfCnliRCuhGRHzdvdbJaQFpjmlM2IXkwO-0IsKHkENmGILyGnOEFcUIho-QPoajVxeA3oJ4TdWrPRowubYpqCRY8pAtqZAg6liDJMVRsViCXEYa83piHY2ihEB6_IRIeGbOI6moxsmuZ1qbivzaE3Y4Fv7_G4-X15cX_-C9_cXl2fn91gy1W_4J0wTlgmOr7jyvC2E9Q4SxT3tPXEe2qYdcRLJ50FRzvZMdnXc_RWKsJ8z4-bH5vunNPzCmXRT2nNsbbUTNXrCcq4rKiTDTWYEXSIPi3Z2Poc1IXruj7U-llHW9UpwdpKoBvB5lRKBq_nHCaT_2pK9N4tvbmlq1t675bmlcM2TqnYOED-P8rHpH9s-pn-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918641236</pqid></control><display><type>article</type><title>Spatiotemporal variations of eco-environment in the Guangxi Beibu Gulf Economic Zone based on remote sensing ecological index and granular computing</title><source>Springer Nature</source><creator>Liao, Weihua ; Jiang, Weiguo ; Huang, Ziqian</creator><creatorcontrib>Liao, Weihua ; Jiang, Weiguo ; Huang, Ziqian</creatorcontrib><description>Accurate and rapid evaluation of the regional eco-environment is critical to policy formulation. The remote sensing ecological index (RSEI) model of the Guangxi Beibu Gulf Economic Zone (GBGEZ) during 2001–2020 was established and evaluated using four indices: dryness, wetness, greenness, and heat. This paper proposes an information granulation method for remote sensing based on the RSEI index value that uses granular computing. We found that: (1) From 2001 to 2020, the eco-environmental quality (EEQ) of GBGEZ tended to improve, and the spatial difference tended to expand. The regional spatial distribution of the eco-environment is primarily in the second-level and third-level areas, and the EEQ in the east and west is better than that in the middle. The contribution of greenness, wetness, and dryness to the improvement of EEQ in the study region increased year by year. (2) From 2001 to 2020, the order of the contribution of the EEQ index in the GBGEZ was dryness, wetness, greenness, and heat. (3) The social and economic activities in the study region had a certain inhibitory effect on the improvement of the EEQ.</description><identifier>ISSN: 1009-637X</identifier><identifier>EISSN: 1861-9568</identifier><identifier>DOI: 10.1007/s11442-022-2024-3</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Analysis ; Earth and Environmental Science ; Economics ; Environmental quality ; Geographical Information Systems/Cartography ; Geography ; Geospatial data ; Nature Conservation ; Physical Geography ; Regular Article ; Remote sensing ; Remote Sensing/Photogrammetry ; Spatial distribution</subject><ispartof>Journal of geographical sciences, 2022-09, Vol.32 (9), p.1813-1830</ispartof><rights>Science in China Press 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Science in China Press 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-b4ad4c2473b39a35741adc093f15f0ff1a2cd0f6d6dced17672685688c6902f83</citedby><cites>FETCH-LOGICAL-c398t-b4ad4c2473b39a35741adc093f15f0ff1a2cd0f6d6dced17672685688c6902f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Liao, Weihua</creatorcontrib><creatorcontrib>Jiang, Weiguo</creatorcontrib><creatorcontrib>Huang, Ziqian</creatorcontrib><title>Spatiotemporal variations of eco-environment in the Guangxi Beibu Gulf Economic Zone based on remote sensing ecological index and granular computing</title><title>Journal of geographical sciences</title><addtitle>J. Geogr. Sci</addtitle><description>Accurate and rapid evaluation of the regional eco-environment is critical to policy formulation. The remote sensing ecological index (RSEI) model of the Guangxi Beibu Gulf Economic Zone (GBGEZ) during 2001–2020 was established and evaluated using four indices: dryness, wetness, greenness, and heat. This paper proposes an information granulation method for remote sensing based on the RSEI index value that uses granular computing. We found that: (1) From 2001 to 2020, the eco-environmental quality (EEQ) of GBGEZ tended to improve, and the spatial difference tended to expand. The regional spatial distribution of the eco-environment is primarily in the second-level and third-level areas, and the EEQ in the east and west is better than that in the middle. The contribution of greenness, wetness, and dryness to the improvement of EEQ in the study region increased year by year. (2) From 2001 to 2020, the order of the contribution of the EEQ index in the GBGEZ was dryness, wetness, greenness, and heat. (3) The social and economic activities in the study region had a certain inhibitory effect on the improvement of the EEQ.</description><subject>Analysis</subject><subject>Earth and Environmental Science</subject><subject>Economics</subject><subject>Environmental quality</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Geospatial data</subject><subject>Nature Conservation</subject><subject>Physical Geography</subject><subject>Regular Article</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Spatial distribution</subject><issn>1009-637X</issn><issn>1861-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1Uc1KHjEUHYpCre0DdBfoOpq_yUyWVtQKggstiJuQL7mZRmaSMZkR-x4-cPMxQleSxc29nHPuz2ma75ScUEK600KpEAwTxjAjTGD-qTmivaRYtbI_qH9CFJa8e_jcfCnliRCuhGRHzdvdbJaQFpjmlM2IXkwO-0IsKHkENmGILyGnOEFcUIho-QPoajVxeA3oJ4TdWrPRowubYpqCRY8pAtqZAg6liDJMVRsViCXEYa83piHY2ihEB6_IRIeGbOI6moxsmuZ1qbivzaE3Y4Fv7_G4-X15cX_-C9_cXl2fn91gy1W_4J0wTlgmOr7jyvC2E9Q4SxT3tPXEe2qYdcRLJ50FRzvZMdnXc_RWKsJ8z4-bH5vunNPzCmXRT2nNsbbUTNXrCcq4rKiTDTWYEXSIPi3Z2Poc1IXruj7U-llHW9UpwdpKoBvB5lRKBq_nHCaT_2pK9N4tvbmlq1t675bmlcM2TqnYOED-P8rHpH9s-pn-</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Liao, Weihua</creator><creator>Jiang, Weiguo</creator><creator>Huang, Ziqian</creator><general>Science Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220901</creationdate><title>Spatiotemporal variations of eco-environment in the Guangxi Beibu Gulf Economic Zone based on remote sensing ecological index and granular computing</title><author>Liao, Weihua ; Jiang, Weiguo ; Huang, Ziqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-b4ad4c2473b39a35741adc093f15f0ff1a2cd0f6d6dced17672685688c6902f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Earth and Environmental Science</topic><topic>Economics</topic><topic>Environmental quality</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Geospatial data</topic><topic>Nature Conservation</topic><topic>Physical Geography</topic><topic>Regular Article</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Weihua</creatorcontrib><creatorcontrib>Jiang, Weiguo</creatorcontrib><creatorcontrib>Huang, Ziqian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of geographical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Weihua</au><au>Jiang, Weiguo</au><au>Huang, Ziqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal variations of eco-environment in the Guangxi Beibu Gulf Economic Zone based on remote sensing ecological index and granular computing</atitle><jtitle>Journal of geographical sciences</jtitle><stitle>J. Geogr. Sci</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>32</volume><issue>9</issue><spage>1813</spage><epage>1830</epage><pages>1813-1830</pages><issn>1009-637X</issn><eissn>1861-9568</eissn><abstract>Accurate and rapid evaluation of the regional eco-environment is critical to policy formulation. The remote sensing ecological index (RSEI) model of the Guangxi Beibu Gulf Economic Zone (GBGEZ) during 2001–2020 was established and evaluated using four indices: dryness, wetness, greenness, and heat. This paper proposes an information granulation method for remote sensing based on the RSEI index value that uses granular computing. We found that: (1) From 2001 to 2020, the eco-environmental quality (EEQ) of GBGEZ tended to improve, and the spatial difference tended to expand. The regional spatial distribution of the eco-environment is primarily in the second-level and third-level areas, and the EEQ in the east and west is better than that in the middle. The contribution of greenness, wetness, and dryness to the improvement of EEQ in the study region increased year by year. (2) From 2001 to 2020, the order of the contribution of the EEQ index in the GBGEZ was dryness, wetness, greenness, and heat. (3) The social and economic activities in the study region had a certain inhibitory effect on the improvement of the EEQ.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11442-022-2024-3</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-637X |
ispartof | Journal of geographical sciences, 2022-09, Vol.32 (9), p.1813-1830 |
issn | 1009-637X 1861-9568 |
language | eng |
recordid | cdi_proquest_journals_2918641236 |
source | Springer Nature |
subjects | Analysis Earth and Environmental Science Economics Environmental quality Geographical Information Systems/Cartography Geography Geospatial data Nature Conservation Physical Geography Regular Article Remote sensing Remote Sensing/Photogrammetry Spatial distribution |
title | Spatiotemporal variations of eco-environment in the Guangxi Beibu Gulf Economic Zone based on remote sensing ecological index and granular computing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20variations%20of%20eco-environment%20in%20the%20Guangxi%20Beibu%20Gulf%20Economic%20Zone%20based%20on%20remote%20sensing%20ecological%20index%20and%20granular%20computing&rft.jtitle=Journal%20of%20geographical%20sciences&rft.au=Liao,%20Weihua&rft.date=2022-09-01&rft.volume=32&rft.issue=9&rft.spage=1813&rft.epage=1830&rft.pages=1813-1830&rft.issn=1009-637X&rft.eissn=1861-9568&rft_id=info:doi/10.1007/s11442-022-2024-3&rft_dat=%3Cgale_proqu%3EA715979425%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-b4ad4c2473b39a35741adc093f15f0ff1a2cd0f6d6dced17672685688c6902f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918641236&rft_id=info:pmid/&rft_galeid=A715979425&rfr_iscdi=true |