Loading…
Stochastic Optimization for Adaptive Real-Time Wavefront Correction
We have investigated the performance of an adaptive optics system subjected to changing atmospheric conditions, under the guidance of the ALOPEX stochastic optimization. Atmospheric distortions are smoothed out by means of a deformable mirror, the shape of which can be altered in order to follow the...
Saved in:
Published in: | Numerical algorithms 2003-08, Vol.33 (1-4), p.509-520 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c227t-3f90cccd13d03f82ab0d17ca8fc901b31eb8f7c70818db1380249292ff1448533 |
---|---|
cites | |
container_end_page | 520 |
container_issue | 1-4 |
container_start_page | 509 |
container_title | Numerical algorithms |
container_volume | 33 |
creator | Zakynthinaki, M.S Saridakis, Y.G |
description | We have investigated the performance of an adaptive optics system subjected to changing atmospheric conditions, under the guidance of the ALOPEX stochastic optimization. Atmospheric distortions are smoothed out by means of a deformable mirror, the shape of which can be altered in order to follow the rapidly changing atmospheric phase fluctuations. In a simulation model, the total intensity of the light measured on a central area of the image (masking area) is used as the cost function for our stochastic optimization algorithm, while the surface of the deformable mirror is approximated by a Zernike polynomial expansion. Atmospheric turbulence is simulated by a number of Kolmogorov filters. The method's effectiveness, that is its ability to follow the motion of the turbulent wavefronts, is studied in detail and as it pertains to the size of the mirror's masking area, to the number of Zernike polynomials used and to the degree of the algorithm's stochasticity in relation to the mean rate of change of atmospheric distortions. Computer simulations and a series of numerical experiments are reported to show the successful implementation of the method. |
doi_str_mv | 10.1023/A:1025569601287 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918649216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918649216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-3f90cccd13d03f82ab0d17ca8fc901b31eb8f7c70818db1380249292ff1448533</originalsourceid><addsrcrecordid>eNotjU1LAzEURYMoWKtrtwHX0fdeZiaJu2HwCwoFrbgsmUyCU9pJzaRd-Osd0dW5XA73MnaNcItA8q6-n1CWlakASasTNsNSkTBUladTBlQCpdHn7GIcNwAIQGrGmrcc3acdc-_4cp_7Xf9tcx8HHmLidWen6uj5q7dbsep3nn_Yow8pDpk3MSXvft1LdhbsdvRX_5yz98eHVfMsFsunl6ZeCEekspDBgHOuQ9mBDJpsCx0qZ3VwBrCV6FsdlFOgUXctSg1UGDIUAhaFLqWcs5u_3X2KXwc_5vUmHtIwXa7JoK4mGyv5A-soTAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918649216</pqid></control><display><type>article</type><title>Stochastic Optimization for Adaptive Real-Time Wavefront Correction</title><source>Springer Nature</source><creator>Zakynthinaki, M.S ; Saridakis, Y.G</creator><creatorcontrib>Zakynthinaki, M.S ; Saridakis, Y.G</creatorcontrib><description>We have investigated the performance of an adaptive optics system subjected to changing atmospheric conditions, under the guidance of the ALOPEX stochastic optimization. Atmospheric distortions are smoothed out by means of a deformable mirror, the shape of which can be altered in order to follow the rapidly changing atmospheric phase fluctuations. In a simulation model, the total intensity of the light measured on a central area of the image (masking area) is used as the cost function for our stochastic optimization algorithm, while the surface of the deformable mirror is approximated by a Zernike polynomial expansion. Atmospheric turbulence is simulated by a number of Kolmogorov filters. The method's effectiveness, that is its ability to follow the motion of the turbulent wavefronts, is studied in detail and as it pertains to the size of the mirror's masking area, to the number of Zernike polynomials used and to the degree of the algorithm's stochasticity in relation to the mean rate of change of atmospheric distortions. Computer simulations and a series of numerical experiments are reported to show the successful implementation of the method.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1023/A:1025569601287</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Adaptive optics ; Adaptive systems ; Algorithms ; Atmospheric turbulence ; Cost function ; Deformable mirrors ; Deformation ; Formability ; Luminous intensity ; Masking ; Optimization ; Simulation ; Wave fronts ; Zernike polynomials</subject><ispartof>Numerical algorithms, 2003-08, Vol.33 (1-4), p.509-520</ispartof><rights>Kluwer Academic Publishers 2003.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-3f90cccd13d03f82ab0d17ca8fc901b31eb8f7c70818db1380249292ff1448533</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zakynthinaki, M.S</creatorcontrib><creatorcontrib>Saridakis, Y.G</creatorcontrib><title>Stochastic Optimization for Adaptive Real-Time Wavefront Correction</title><title>Numerical algorithms</title><description>We have investigated the performance of an adaptive optics system subjected to changing atmospheric conditions, under the guidance of the ALOPEX stochastic optimization. Atmospheric distortions are smoothed out by means of a deformable mirror, the shape of which can be altered in order to follow the rapidly changing atmospheric phase fluctuations. In a simulation model, the total intensity of the light measured on a central area of the image (masking area) is used as the cost function for our stochastic optimization algorithm, while the surface of the deformable mirror is approximated by a Zernike polynomial expansion. Atmospheric turbulence is simulated by a number of Kolmogorov filters. The method's effectiveness, that is its ability to follow the motion of the turbulent wavefronts, is studied in detail and as it pertains to the size of the mirror's masking area, to the number of Zernike polynomials used and to the degree of the algorithm's stochasticity in relation to the mean rate of change of atmospheric distortions. Computer simulations and a series of numerical experiments are reported to show the successful implementation of the method.</description><subject>Adaptive optics</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Atmospheric turbulence</subject><subject>Cost function</subject><subject>Deformable mirrors</subject><subject>Deformation</subject><subject>Formability</subject><subject>Luminous intensity</subject><subject>Masking</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Wave fronts</subject><subject>Zernike polynomials</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotjU1LAzEURYMoWKtrtwHX0fdeZiaJu2HwCwoFrbgsmUyCU9pJzaRd-Osd0dW5XA73MnaNcItA8q6-n1CWlakASasTNsNSkTBUladTBlQCpdHn7GIcNwAIQGrGmrcc3acdc-_4cp_7Xf9tcx8HHmLidWen6uj5q7dbsep3nn_Yow8pDpk3MSXvft1LdhbsdvRX_5yz98eHVfMsFsunl6ZeCEekspDBgHOuQ9mBDJpsCx0qZ3VwBrCV6FsdlFOgUXctSg1UGDIUAhaFLqWcs5u_3X2KXwc_5vUmHtIwXa7JoK4mGyv5A-soTAY</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Zakynthinaki, M.S</creator><creator>Saridakis, Y.G</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20030801</creationdate><title>Stochastic Optimization for Adaptive Real-Time Wavefront Correction</title><author>Zakynthinaki, M.S ; Saridakis, Y.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-3f90cccd13d03f82ab0d17ca8fc901b31eb8f7c70818db1380249292ff1448533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptive optics</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Atmospheric turbulence</topic><topic>Cost function</topic><topic>Deformable mirrors</topic><topic>Deformation</topic><topic>Formability</topic><topic>Luminous intensity</topic><topic>Masking</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Wave fronts</topic><topic>Zernike polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakynthinaki, M.S</creatorcontrib><creatorcontrib>Saridakis, Y.G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakynthinaki, M.S</au><au>Saridakis, Y.G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Optimization for Adaptive Real-Time Wavefront Correction</atitle><jtitle>Numerical algorithms</jtitle><date>2003-08-01</date><risdate>2003</risdate><volume>33</volume><issue>1-4</issue><spage>509</spage><epage>520</epage><pages>509-520</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>We have investigated the performance of an adaptive optics system subjected to changing atmospheric conditions, under the guidance of the ALOPEX stochastic optimization. Atmospheric distortions are smoothed out by means of a deformable mirror, the shape of which can be altered in order to follow the rapidly changing atmospheric phase fluctuations. In a simulation model, the total intensity of the light measured on a central area of the image (masking area) is used as the cost function for our stochastic optimization algorithm, while the surface of the deformable mirror is approximated by a Zernike polynomial expansion. Atmospheric turbulence is simulated by a number of Kolmogorov filters. The method's effectiveness, that is its ability to follow the motion of the turbulent wavefronts, is studied in detail and as it pertains to the size of the mirror's masking area, to the number of Zernike polynomials used and to the degree of the algorithm's stochasticity in relation to the mean rate of change of atmospheric distortions. Computer simulations and a series of numerical experiments are reported to show the successful implementation of the method.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1025569601287</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2003-08, Vol.33 (1-4), p.509-520 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918649216 |
source | Springer Nature |
subjects | Adaptive optics Adaptive systems Algorithms Atmospheric turbulence Cost function Deformable mirrors Deformation Formability Luminous intensity Masking Optimization Simulation Wave fronts Zernike polynomials |
title | Stochastic Optimization for Adaptive Real-Time Wavefront Correction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Optimization%20for%20Adaptive%20Real-Time%20Wavefront%20Correction&rft.jtitle=Numerical%20algorithms&rft.au=Zakynthinaki,%20M.S&rft.date=2003-08-01&rft.volume=33&rft.issue=1-4&rft.spage=509&rft.epage=520&rft.pages=509-520&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1023/A:1025569601287&rft_dat=%3Cproquest%3E2918649216%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-3f90cccd13d03f82ab0d17ca8fc901b31eb8f7c70818db1380249292ff1448533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918649216&rft_id=info:pmid/&rfr_iscdi=true |