Loading…

Stochastic Optimization for Adaptive Real-Time Wavefront Correction

We have investigated the performance of an adaptive optics system subjected to changing atmospheric conditions, under the guidance of the ALOPEX stochastic optimization. Atmospheric distortions are smoothed out by means of a deformable mirror, the shape of which can be altered in order to follow the...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms 2003-08, Vol.33 (1-4), p.509-520
Main Authors: Zakynthinaki, M.S, Saridakis, Y.G
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c227t-3f90cccd13d03f82ab0d17ca8fc901b31eb8f7c70818db1380249292ff1448533
cites
container_end_page 520
container_issue 1-4
container_start_page 509
container_title Numerical algorithms
container_volume 33
creator Zakynthinaki, M.S
Saridakis, Y.G
description We have investigated the performance of an adaptive optics system subjected to changing atmospheric conditions, under the guidance of the ALOPEX stochastic optimization. Atmospheric distortions are smoothed out by means of a deformable mirror, the shape of which can be altered in order to follow the rapidly changing atmospheric phase fluctuations. In a simulation model, the total intensity of the light measured on a central area of the image (masking area) is used as the cost function for our stochastic optimization algorithm, while the surface of the deformable mirror is approximated by a Zernike polynomial expansion. Atmospheric turbulence is simulated by a number of Kolmogorov filters. The method's effectiveness, that is its ability to follow the motion of the turbulent wavefronts, is studied in detail and as it pertains to the size of the mirror's masking area, to the number of Zernike polynomials used and to the degree of the algorithm's stochasticity in relation to the mean rate of change of atmospheric distortions. Computer simulations and a series of numerical experiments are reported to show the successful implementation of the method.
doi_str_mv 10.1023/A:1025569601287
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918649216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918649216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-3f90cccd13d03f82ab0d17ca8fc901b31eb8f7c70818db1380249292ff1448533</originalsourceid><addsrcrecordid>eNotjU1LAzEURYMoWKtrtwHX0fdeZiaJu2HwCwoFrbgsmUyCU9pJzaRd-Osd0dW5XA73MnaNcItA8q6-n1CWlakASasTNsNSkTBUladTBlQCpdHn7GIcNwAIQGrGmrcc3acdc-_4cp_7Xf9tcx8HHmLidWen6uj5q7dbsep3nn_Yow8pDpk3MSXvft1LdhbsdvRX_5yz98eHVfMsFsunl6ZeCEekspDBgHOuQ9mBDJpsCx0qZ3VwBrCV6FsdlFOgUXctSg1UGDIUAhaFLqWcs5u_3X2KXwc_5vUmHtIwXa7JoK4mGyv5A-soTAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918649216</pqid></control><display><type>article</type><title>Stochastic Optimization for Adaptive Real-Time Wavefront Correction</title><source>Springer Nature</source><creator>Zakynthinaki, M.S ; Saridakis, Y.G</creator><creatorcontrib>Zakynthinaki, M.S ; Saridakis, Y.G</creatorcontrib><description>We have investigated the performance of an adaptive optics system subjected to changing atmospheric conditions, under the guidance of the ALOPEX stochastic optimization. Atmospheric distortions are smoothed out by means of a deformable mirror, the shape of which can be altered in order to follow the rapidly changing atmospheric phase fluctuations. In a simulation model, the total intensity of the light measured on a central area of the image (masking area) is used as the cost function for our stochastic optimization algorithm, while the surface of the deformable mirror is approximated by a Zernike polynomial expansion. Atmospheric turbulence is simulated by a number of Kolmogorov filters. The method's effectiveness, that is its ability to follow the motion of the turbulent wavefronts, is studied in detail and as it pertains to the size of the mirror's masking area, to the number of Zernike polynomials used and to the degree of the algorithm's stochasticity in relation to the mean rate of change of atmospheric distortions. Computer simulations and a series of numerical experiments are reported to show the successful implementation of the method.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1023/A:1025569601287</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Adaptive optics ; Adaptive systems ; Algorithms ; Atmospheric turbulence ; Cost function ; Deformable mirrors ; Deformation ; Formability ; Luminous intensity ; Masking ; Optimization ; Simulation ; Wave fronts ; Zernike polynomials</subject><ispartof>Numerical algorithms, 2003-08, Vol.33 (1-4), p.509-520</ispartof><rights>Kluwer Academic Publishers 2003.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-3f90cccd13d03f82ab0d17ca8fc901b31eb8f7c70818db1380249292ff1448533</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zakynthinaki, M.S</creatorcontrib><creatorcontrib>Saridakis, Y.G</creatorcontrib><title>Stochastic Optimization for Adaptive Real-Time Wavefront Correction</title><title>Numerical algorithms</title><description>We have investigated the performance of an adaptive optics system subjected to changing atmospheric conditions, under the guidance of the ALOPEX stochastic optimization. Atmospheric distortions are smoothed out by means of a deformable mirror, the shape of which can be altered in order to follow the rapidly changing atmospheric phase fluctuations. In a simulation model, the total intensity of the light measured on a central area of the image (masking area) is used as the cost function for our stochastic optimization algorithm, while the surface of the deformable mirror is approximated by a Zernike polynomial expansion. Atmospheric turbulence is simulated by a number of Kolmogorov filters. The method's effectiveness, that is its ability to follow the motion of the turbulent wavefronts, is studied in detail and as it pertains to the size of the mirror's masking area, to the number of Zernike polynomials used and to the degree of the algorithm's stochasticity in relation to the mean rate of change of atmospheric distortions. Computer simulations and a series of numerical experiments are reported to show the successful implementation of the method.</description><subject>Adaptive optics</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Atmospheric turbulence</subject><subject>Cost function</subject><subject>Deformable mirrors</subject><subject>Deformation</subject><subject>Formability</subject><subject>Luminous intensity</subject><subject>Masking</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Wave fronts</subject><subject>Zernike polynomials</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotjU1LAzEURYMoWKtrtwHX0fdeZiaJu2HwCwoFrbgsmUyCU9pJzaRd-Osd0dW5XA73MnaNcItA8q6-n1CWlakASasTNsNSkTBUladTBlQCpdHn7GIcNwAIQGrGmrcc3acdc-_4cp_7Xf9tcx8HHmLidWen6uj5q7dbsep3nn_Yow8pDpk3MSXvft1LdhbsdvRX_5yz98eHVfMsFsunl6ZeCEekspDBgHOuQ9mBDJpsCx0qZ3VwBrCV6FsdlFOgUXctSg1UGDIUAhaFLqWcs5u_3X2KXwc_5vUmHtIwXa7JoK4mGyv5A-soTAY</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Zakynthinaki, M.S</creator><creator>Saridakis, Y.G</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20030801</creationdate><title>Stochastic Optimization for Adaptive Real-Time Wavefront Correction</title><author>Zakynthinaki, M.S ; Saridakis, Y.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-3f90cccd13d03f82ab0d17ca8fc901b31eb8f7c70818db1380249292ff1448533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptive optics</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Atmospheric turbulence</topic><topic>Cost function</topic><topic>Deformable mirrors</topic><topic>Deformation</topic><topic>Formability</topic><topic>Luminous intensity</topic><topic>Masking</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Wave fronts</topic><topic>Zernike polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakynthinaki, M.S</creatorcontrib><creatorcontrib>Saridakis, Y.G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakynthinaki, M.S</au><au>Saridakis, Y.G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Optimization for Adaptive Real-Time Wavefront Correction</atitle><jtitle>Numerical algorithms</jtitle><date>2003-08-01</date><risdate>2003</risdate><volume>33</volume><issue>1-4</issue><spage>509</spage><epage>520</epage><pages>509-520</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>We have investigated the performance of an adaptive optics system subjected to changing atmospheric conditions, under the guidance of the ALOPEX stochastic optimization. Atmospheric distortions are smoothed out by means of a deformable mirror, the shape of which can be altered in order to follow the rapidly changing atmospheric phase fluctuations. In a simulation model, the total intensity of the light measured on a central area of the image (masking area) is used as the cost function for our stochastic optimization algorithm, while the surface of the deformable mirror is approximated by a Zernike polynomial expansion. Atmospheric turbulence is simulated by a number of Kolmogorov filters. The method's effectiveness, that is its ability to follow the motion of the turbulent wavefronts, is studied in detail and as it pertains to the size of the mirror's masking area, to the number of Zernike polynomials used and to the degree of the algorithm's stochasticity in relation to the mean rate of change of atmospheric distortions. Computer simulations and a series of numerical experiments are reported to show the successful implementation of the method.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1025569601287</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2003-08, Vol.33 (1-4), p.509-520
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918649216
source Springer Nature
subjects Adaptive optics
Adaptive systems
Algorithms
Atmospheric turbulence
Cost function
Deformable mirrors
Deformation
Formability
Luminous intensity
Masking
Optimization
Simulation
Wave fronts
Zernike polynomials
title Stochastic Optimization for Adaptive Real-Time Wavefront Correction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Optimization%20for%20Adaptive%20Real-Time%20Wavefront%20Correction&rft.jtitle=Numerical%20algorithms&rft.au=Zakynthinaki,%20M.S&rft.date=2003-08-01&rft.volume=33&rft.issue=1-4&rft.spage=509&rft.epage=520&rft.pages=509-520&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1023/A:1025569601287&rft_dat=%3Cproquest%3E2918649216%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-3f90cccd13d03f82ab0d17ca8fc901b31eb8f7c70818db1380249292ff1448533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918649216&rft_id=info:pmid/&rfr_iscdi=true