Loading…
Optimization-based motion primitive automata for autonomous driving
Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization...
Saved in:
Published in: | arXiv.org 2024-01 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pedrosa, Matheus V A Scheffe, Patrick Alrifaee, Bassam Flaßkamp, Kathrin |
description | Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization problems have to be solved. For the resulting Pareto-optimal motion primitives, we introduce a universal automaton, which can be reduced or reconfigured according to prioritized criteria during planning. We evaluate a corresponding multi-vehicle planning scenario with both simulations and laboratory experiments. |
doi_str_mv | 10.48550/arxiv.2401.14276 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918650748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918650748</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-7e8827a1124a6ccee2968139ccbe7e492031661d8c5fc1267893a601ce9798273</originalsourceid><addsrcrecordid>eNotjslqwzAURUWh0JDmA7IzdO1U72leFtMJAtlkHxRZLgq15UqyKf36usPqcrjcgZAt0B3XQtB7mz7DvENOYQcclbwiK2QMas0Rb8gm5wulFKVCIdiKNIexhD582RLiUJ9t9m3Vxx-oxrQYJcy-slOJvS226mL6hSH2ccpVm8Ichrdbct3Z9-w3_7omx6fHY_NS7w_Pr83DvrYCda281qgsAHIrnfMejdTAjHNnrzw3SBlICa12onOwHNSGWUnBeaPMkmRrcvdXO6b4MflcTpc4pWFZPKEBLQVVXLNvDFpMIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918650748</pqid></control><display><type>article</type><title>Optimization-based motion primitive automata for autonomous driving</title><source>ProQuest Publicly Available Content database</source><creator>Pedrosa, Matheus V A ; Scheffe, Patrick ; Alrifaee, Bassam ; Flaßkamp, Kathrin</creator><creatorcontrib>Pedrosa, Matheus V A ; Scheffe, Patrick ; Alrifaee, Bassam ; Flaßkamp, Kathrin</creatorcontrib><description>Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization problems have to be solved. For the resulting Pareto-optimal motion primitives, we introduce a universal automaton, which can be reduced or reconfigured according to prioritized criteria during planning. We evaluate a corresponding multi-vehicle planning scenario with both simulations and laboratory experiments.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2401.14276</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous cars ; Multiple criterion ; Multiple objective analysis ; Pareto optimization ; Trajectory optimization ; Trajectory planning</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918650748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Pedrosa, Matheus V A</creatorcontrib><creatorcontrib>Scheffe, Patrick</creatorcontrib><creatorcontrib>Alrifaee, Bassam</creatorcontrib><creatorcontrib>Flaßkamp, Kathrin</creatorcontrib><title>Optimization-based motion primitive automata for autonomous driving</title><title>arXiv.org</title><description>Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization problems have to be solved. For the resulting Pareto-optimal motion primitives, we introduce a universal automaton, which can be reduced or reconfigured according to prioritized criteria during planning. We evaluate a corresponding multi-vehicle planning scenario with both simulations and laboratory experiments.</description><subject>Autonomous cars</subject><subject>Multiple criterion</subject><subject>Multiple objective analysis</subject><subject>Pareto optimization</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjslqwzAURUWh0JDmA7IzdO1U72leFtMJAtlkHxRZLgq15UqyKf36usPqcrjcgZAt0B3XQtB7mz7DvENOYQcclbwiK2QMas0Rb8gm5wulFKVCIdiKNIexhD582RLiUJ9t9m3Vxx-oxrQYJcy-slOJvS226mL6hSH2ccpVm8Ichrdbct3Z9-w3_7omx6fHY_NS7w_Pr83DvrYCda281qgsAHIrnfMejdTAjHNnrzw3SBlICa12onOwHNSGWUnBeaPMkmRrcvdXO6b4MflcTpc4pWFZPKEBLQVVXLNvDFpMIA</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Pedrosa, Matheus V A</creator><creator>Scheffe, Patrick</creator><creator>Alrifaee, Bassam</creator><creator>Flaßkamp, Kathrin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240125</creationdate><title>Optimization-based motion primitive automata for autonomous driving</title><author>Pedrosa, Matheus V A ; Scheffe, Patrick ; Alrifaee, Bassam ; Flaßkamp, Kathrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-7e8827a1124a6ccee2968139ccbe7e492031661d8c5fc1267893a601ce9798273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous cars</topic><topic>Multiple criterion</topic><topic>Multiple objective analysis</topic><topic>Pareto optimization</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Pedrosa, Matheus V A</creatorcontrib><creatorcontrib>Scheffe, Patrick</creatorcontrib><creatorcontrib>Alrifaee, Bassam</creatorcontrib><creatorcontrib>Flaßkamp, Kathrin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedrosa, Matheus V A</au><au>Scheffe, Patrick</au><au>Alrifaee, Bassam</au><au>Flaßkamp, Kathrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization-based motion primitive automata for autonomous driving</atitle><jtitle>arXiv.org</jtitle><date>2024-01-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization problems have to be solved. For the resulting Pareto-optimal motion primitives, we introduce a universal automaton, which can be reduced or reconfigured according to prioritized criteria during planning. We evaluate a corresponding multi-vehicle planning scenario with both simulations and laboratory experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2401.14276</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2918650748 |
source | ProQuest Publicly Available Content database |
subjects | Autonomous cars Multiple criterion Multiple objective analysis Pareto optimization Trajectory optimization Trajectory planning |
title | Optimization-based motion primitive automata for autonomous driving |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization-based%20motion%20primitive%20automata%20for%20autonomous%20driving&rft.jtitle=arXiv.org&rft.au=Pedrosa,%20Matheus%20V%20A&rft.date=2024-01-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2401.14276&rft_dat=%3Cproquest%3E2918650748%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-7e8827a1124a6ccee2968139ccbe7e492031661d8c5fc1267893a601ce9798273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918650748&rft_id=info:pmid/&rfr_iscdi=true |