Loading…

Optimization-based motion primitive automata for autonomous driving

Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-01
Main Authors: Pedrosa, Matheus V A, Scheffe, Patrick, Alrifaee, Bassam, Flaßkamp, Kathrin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pedrosa, Matheus V A
Scheffe, Patrick
Alrifaee, Bassam
Flaßkamp, Kathrin
description Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization problems have to be solved. For the resulting Pareto-optimal motion primitives, we introduce a universal automaton, which can be reduced or reconfigured according to prioritized criteria during planning. We evaluate a corresponding multi-vehicle planning scenario with both simulations and laboratory experiments.
doi_str_mv 10.48550/arxiv.2401.14276
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918650748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918650748</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-7e8827a1124a6ccee2968139ccbe7e492031661d8c5fc1267893a601ce9798273</originalsourceid><addsrcrecordid>eNotjslqwzAURUWh0JDmA7IzdO1U72leFtMJAtlkHxRZLgq15UqyKf36usPqcrjcgZAt0B3XQtB7mz7DvENOYQcclbwiK2QMas0Rb8gm5wulFKVCIdiKNIexhD582RLiUJ9t9m3Vxx-oxrQYJcy-slOJvS226mL6hSH2ccpVm8Ichrdbct3Z9-w3_7omx6fHY_NS7w_Pr83DvrYCda281qgsAHIrnfMejdTAjHNnrzw3SBlICa12onOwHNSGWUnBeaPMkmRrcvdXO6b4MflcTpc4pWFZPKEBLQVVXLNvDFpMIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918650748</pqid></control><display><type>article</type><title>Optimization-based motion primitive automata for autonomous driving</title><source>ProQuest Publicly Available Content database</source><creator>Pedrosa, Matheus V A ; Scheffe, Patrick ; Alrifaee, Bassam ; Flaßkamp, Kathrin</creator><creatorcontrib>Pedrosa, Matheus V A ; Scheffe, Patrick ; Alrifaee, Bassam ; Flaßkamp, Kathrin</creatorcontrib><description>Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization problems have to be solved. For the resulting Pareto-optimal motion primitives, we introduce a universal automaton, which can be reduced or reconfigured according to prioritized criteria during planning. We evaluate a corresponding multi-vehicle planning scenario with both simulations and laboratory experiments.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2401.14276</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous cars ; Multiple criterion ; Multiple objective analysis ; Pareto optimization ; Trajectory optimization ; Trajectory planning</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918650748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Pedrosa, Matheus V A</creatorcontrib><creatorcontrib>Scheffe, Patrick</creatorcontrib><creatorcontrib>Alrifaee, Bassam</creatorcontrib><creatorcontrib>Flaßkamp, Kathrin</creatorcontrib><title>Optimization-based motion primitive automata for autonomous driving</title><title>arXiv.org</title><description>Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization problems have to be solved. For the resulting Pareto-optimal motion primitives, we introduce a universal automaton, which can be reduced or reconfigured according to prioritized criteria during planning. We evaluate a corresponding multi-vehicle planning scenario with both simulations and laboratory experiments.</description><subject>Autonomous cars</subject><subject>Multiple criterion</subject><subject>Multiple objective analysis</subject><subject>Pareto optimization</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjslqwzAURUWh0JDmA7IzdO1U72leFtMJAtlkHxRZLgq15UqyKf36usPqcrjcgZAt0B3XQtB7mz7DvENOYQcclbwiK2QMas0Rb8gm5wulFKVCIdiKNIexhD582RLiUJ9t9m3Vxx-oxrQYJcy-slOJvS226mL6hSH2ccpVm8Ichrdbct3Z9-w3_7omx6fHY_NS7w_Pr83DvrYCda281qgsAHIrnfMejdTAjHNnrzw3SBlICa12onOwHNSGWUnBeaPMkmRrcvdXO6b4MflcTpc4pWFZPKEBLQVVXLNvDFpMIA</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Pedrosa, Matheus V A</creator><creator>Scheffe, Patrick</creator><creator>Alrifaee, Bassam</creator><creator>Flaßkamp, Kathrin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240125</creationdate><title>Optimization-based motion primitive automata for autonomous driving</title><author>Pedrosa, Matheus V A ; Scheffe, Patrick ; Alrifaee, Bassam ; Flaßkamp, Kathrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-7e8827a1124a6ccee2968139ccbe7e492031661d8c5fc1267893a601ce9798273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous cars</topic><topic>Multiple criterion</topic><topic>Multiple objective analysis</topic><topic>Pareto optimization</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Pedrosa, Matheus V A</creatorcontrib><creatorcontrib>Scheffe, Patrick</creatorcontrib><creatorcontrib>Alrifaee, Bassam</creatorcontrib><creatorcontrib>Flaßkamp, Kathrin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedrosa, Matheus V A</au><au>Scheffe, Patrick</au><au>Alrifaee, Bassam</au><au>Flaßkamp, Kathrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization-based motion primitive automata for autonomous driving</atitle><jtitle>arXiv.org</jtitle><date>2024-01-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization problems have to be solved. For the resulting Pareto-optimal motion primitives, we introduce a universal automaton, which can be reduced or reconfigured according to prioritized criteria during planning. We evaluate a corresponding multi-vehicle planning scenario with both simulations and laboratory experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2401.14276</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2918650748
source ProQuest Publicly Available Content database
subjects Autonomous cars
Multiple criterion
Multiple objective analysis
Pareto optimization
Trajectory optimization
Trajectory planning
title Optimization-based motion primitive automata for autonomous driving
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization-based%20motion%20primitive%20automata%20for%20autonomous%20driving&rft.jtitle=arXiv.org&rft.au=Pedrosa,%20Matheus%20V%20A&rft.date=2024-01-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2401.14276&rft_dat=%3Cproquest%3E2918650748%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-7e8827a1124a6ccee2968139ccbe7e492031661d8c5fc1267893a601ce9798273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918650748&rft_id=info:pmid/&rfr_iscdi=true