Loading…
A family of systems including the Herschel-Bulkley fluid equations
We analyze the Navier-Stokes equations for incompressible fluids with the {\lq\lq}viscous stress tensor{\rq\rq} \(\mathbb{S}\) in a family which includes the Bingham model for viscoplastic fluids (more generally, the Herschel-Bulkley model). \(\mathbb{S}\) is the subgradient of a convex potential \(...
Saved in:
Published in: | arXiv.org 2024-01 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chemetov, Nikolai V Santos, Marcelo M |
description | We analyze the Navier-Stokes equations for incompressible fluids with the {\lq\lq}viscous stress tensor{\rq\rq} \(\mathbb{S}\) in a family which includes the Bingham model for viscoplastic fluids (more generally, the Herschel-Bulkley model). \(\mathbb{S}\) is the subgradient of a convex potential \(V=V(x,t,X)\), allowing that \(V\) can depend on the space-time variables \((x,t)\). The potential has its one-sided directional derivatives \(V'(X,X)\) uniformly bounded from below and above by a \(p\)-power function of the matrices \(X\). For \(p\geqslant 2.2\) we solve an initial boundary value problem for those fluid systems, in a bounded region in \(\mathbb{R}^3\). We take a nonlinear boundary condition, which encompasses the Navier friction/slip boundary condition. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918650751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918650751</sourcerecordid><originalsourceid>FETCH-proquest_journals_29186507513</originalsourceid><addsrcrecordid>eNqNyjEOgjAUgOHGxESi3OElziSlWMBRjIYDuBMCr1IsrfDagdvr4AGc_uH7NywSWZYm5UmIHYuJRs65yAshZRax6gKqnbRZwSmglTxOBNp2JvTaPsEPCDUu1A1okiqYl8EVlAm6B5xD67WzdGBb1RrC-Nc9O95vj2udvBc3ByTfjC4s9kuNOKdlLnkh0-y_6wO4jjnt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918650751</pqid></control><display><type>article</type><title>A family of systems including the Herschel-Bulkley fluid equations</title><source>Access via ProQuest (Open Access)</source><creator>Chemetov, Nikolai V ; Santos, Marcelo M</creator><creatorcontrib>Chemetov, Nikolai V ; Santos, Marcelo M</creatorcontrib><description>We analyze the Navier-Stokes equations for incompressible fluids with the {\lq\lq}viscous stress tensor{\rq\rq} \(\mathbb{S}\) in a family which includes the Bingham model for viscoplastic fluids (more generally, the Herschel-Bulkley model). \(\mathbb{S}\) is the subgradient of a convex potential \(V=V(x,t,X)\), allowing that \(V\) can depend on the space-time variables \((x,t)\). The potential has its one-sided directional derivatives \(V'(X,X)\) uniformly bounded from below and above by a \(p\)-power function of the matrices \(X\). For \(p\geqslant 2.2\) we solve an initial boundary value problem for those fluid systems, in a bounded region in \(\mathbb{R}^3\). We take a nonlinear boundary condition, which encompasses the Navier friction/slip boundary condition.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Boundary value problems ; Fluid flow ; Incompressible flow ; Incompressible fluids ; Mathematical models ; Tensors</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918650751?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Chemetov, Nikolai V</creatorcontrib><creatorcontrib>Santos, Marcelo M</creatorcontrib><title>A family of systems including the Herschel-Bulkley fluid equations</title><title>arXiv.org</title><description>We analyze the Navier-Stokes equations for incompressible fluids with the {\lq\lq}viscous stress tensor{\rq\rq} \(\mathbb{S}\) in a family which includes the Bingham model for viscoplastic fluids (more generally, the Herschel-Bulkley model). \(\mathbb{S}\) is the subgradient of a convex potential \(V=V(x,t,X)\), allowing that \(V\) can depend on the space-time variables \((x,t)\). The potential has its one-sided directional derivatives \(V'(X,X)\) uniformly bounded from below and above by a \(p\)-power function of the matrices \(X\). For \(p\geqslant 2.2\) we solve an initial boundary value problem for those fluid systems, in a bounded region in \(\mathbb{R}^3\). We take a nonlinear boundary condition, which encompasses the Navier friction/slip boundary condition.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Mathematical models</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyjEOgjAUgOHGxESi3OElziSlWMBRjIYDuBMCr1IsrfDagdvr4AGc_uH7NywSWZYm5UmIHYuJRs65yAshZRax6gKqnbRZwSmglTxOBNp2JvTaPsEPCDUu1A1okiqYl8EVlAm6B5xD67WzdGBb1RrC-Nc9O95vj2udvBc3ByTfjC4s9kuNOKdlLnkh0-y_6wO4jjnt</recordid><startdate>20240124</startdate><enddate>20240124</enddate><creator>Chemetov, Nikolai V</creator><creator>Santos, Marcelo M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240124</creationdate><title>A family of systems including the Herschel-Bulkley fluid equations</title><author>Chemetov, Nikolai V ; Santos, Marcelo M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29186507513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Mathematical models</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Chemetov, Nikolai V</creatorcontrib><creatorcontrib>Santos, Marcelo M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chemetov, Nikolai V</au><au>Santos, Marcelo M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A family of systems including the Herschel-Bulkley fluid equations</atitle><jtitle>arXiv.org</jtitle><date>2024-01-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We analyze the Navier-Stokes equations for incompressible fluids with the {\lq\lq}viscous stress tensor{\rq\rq} \(\mathbb{S}\) in a family which includes the Bingham model for viscoplastic fluids (more generally, the Herschel-Bulkley model). \(\mathbb{S}\) is the subgradient of a convex potential \(V=V(x,t,X)\), allowing that \(V\) can depend on the space-time variables \((x,t)\). The potential has its one-sided directional derivatives \(V'(X,X)\) uniformly bounded from below and above by a \(p\)-power function of the matrices \(X\). For \(p\geqslant 2.2\) we solve an initial boundary value problem for those fluid systems, in a bounded region in \(\mathbb{R}^3\). We take a nonlinear boundary condition, which encompasses the Navier friction/slip boundary condition.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2918650751 |
source | Access via ProQuest (Open Access) |
subjects | Boundary conditions Boundary value problems Fluid flow Incompressible flow Incompressible fluids Mathematical models Tensors |
title | A family of systems including the Herschel-Bulkley fluid equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20family%20of%20systems%20including%20the%20Herschel-Bulkley%20fluid%20equations&rft.jtitle=arXiv.org&rft.au=Chemetov,%20Nikolai%20V&rft.date=2024-01-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2918650751%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29186507513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918650751&rft_id=info:pmid/&rfr_iscdi=true |