Loading…

An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment

In this paper, we address a hardware implementation of the efficient robust Bayesian regularization architecture for the real-time enhancement of large-scale remote sensing (RS) imaging. The efficient sense of the proposed architecture is related to the high-performance embedded implementation that...

Full description

Saved in:
Bibliographic Details
Published in:Journal of real-time image processing 2017-12, Vol.13 (4), p.783-796
Main Authors: Castillo Atoche, A., Carrasco Alvarez, R., Palma Marrufo, O., Vázquez Castillo, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3
cites cdi_FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3
container_end_page 796
container_issue 4
container_start_page 783
container_title Journal of real-time image processing
container_volume 13
creator Castillo Atoche, A.
Carrasco Alvarez, R.
Palma Marrufo, O.
Vázquez Castillo, J.
description In this paper, we address a hardware implementation of the efficient robust Bayesian regularization architecture for the real-time enhancement of large-scale remote sensing (RS) imaging. The efficient sense of the proposed architecture is related to the high-performance embedded implementation that is achieved with the aggregation of parallel computing and systolic array design techniques in a novel grid connected-based accelerator. Then, the developed high-speed accelerator is integrated with an embedded processor via the HW/SW co-design paradigm. The presented approach is used for solving RS image enhancement/reconstruction of the ill-conditioned inverse spatial spectrum pattern estimation problems via an interesting low-cost high-performance embedded computing solution. Finally, we show the achieved results and how we drastically reduced the computational load for real-world large-scale geospatial images.
doi_str_mv 10.1007/s11554-014-0441-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918673998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918673998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3</originalsourceid><addsrcrecordid>eNp1UUFu2zAQFIoUqJP2Ab0R6FnpUpQo6egaSVrAQC6-EyS1kmnYpLukCigf6jdDw0V6ymHBBXdmdsgpiq8c7jlA-z1y3jR1CTxXXfNy-VCseCd52VW8v3nrAT4VtzEeAGQrRbMq_q49w3F01qFPLC4xhaOzTBPphU3khtLoiAOLiWabZkIWRpb2yCiYOSb2Qy8YnfaMcJqPmtyLTi54ltDuvfs9IxsD5aE-lsmdkKHfa2-zoDvpyfmJOc_mfEFJu4vIKSRkEX28zND_cRT8KVv7XHwc9THil3_nXbF7fNhtfpbb56dfm_W2tILLVA5GCNsjtINsOtNDD3asxDAIYYyBhjeSm66poTJy1CCroWvbWvBaAkoOg7grvl1lzxSy-ZjUIczk80ZV9fkPW9H3XUbxK8pSiJFwVGfK76FFcVCXONQ1DpXjUJc41JI51ZUTM9ZPSP-V3ye9AlWLke4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918673998</pqid></control><display><type>article</type><title>An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment</title><source>Springer Nature</source><creator>Castillo Atoche, A. ; Carrasco Alvarez, R. ; Palma Marrufo, O. ; Vázquez Castillo, J.</creator><creatorcontrib>Castillo Atoche, A. ; Carrasco Alvarez, R. ; Palma Marrufo, O. ; Vázquez Castillo, J.</creatorcontrib><description>In this paper, we address a hardware implementation of the efficient robust Bayesian regularization architecture for the real-time enhancement of large-scale remote sensing (RS) imaging. The efficient sense of the proposed architecture is related to the high-performance embedded implementation that is achieved with the aggregation of parallel computing and systolic array design techniques in a novel grid connected-based accelerator. Then, the developed high-speed accelerator is integrated with an embedded processor via the HW/SW co-design paradigm. The presented approach is used for solving RS image enhancement/reconstruction of the ill-conditioned inverse spatial spectrum pattern estimation problems via an interesting low-cost high-performance embedded computing solution. Finally, we show the achieved results and how we drastically reduced the computational load for real-world large-scale geospatial images.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-014-0441-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Approximation ; Arrays ; Bayesian analysis ; Co-design ; Computer architecture ; Computer Graphics ; Computer Science ; Data processing ; Embedded systems ; Field programmable gate arrays ; Image enhancement ; Image Processing and Computer Vision ; Image reconstruction ; Inverse problems ; Microprocessors ; Multimedia Information Systems ; Original Research Paper ; Pattern Recognition ; Real time ; Regularization ; Remote sensing ; Robustness ; Signal processing ; Signal,Image and Speech Processing</subject><ispartof>Journal of real-time image processing, 2017-12, Vol.13 (4), p.783-796</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3</citedby><cites>FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castillo Atoche, A.</creatorcontrib><creatorcontrib>Carrasco Alvarez, R.</creatorcontrib><creatorcontrib>Palma Marrufo, O.</creatorcontrib><creatorcontrib>Vázquez Castillo, J.</creatorcontrib><title>An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>In this paper, we address a hardware implementation of the efficient robust Bayesian regularization architecture for the real-time enhancement of large-scale remote sensing (RS) imaging. The efficient sense of the proposed architecture is related to the high-performance embedded implementation that is achieved with the aggregation of parallel computing and systolic array design techniques in a novel grid connected-based accelerator. Then, the developed high-speed accelerator is integrated with an embedded processor via the HW/SW co-design paradigm. The presented approach is used for solving RS image enhancement/reconstruction of the ill-conditioned inverse spatial spectrum pattern estimation problems via an interesting low-cost high-performance embedded computing solution. Finally, we show the achieved results and how we drastically reduced the computational load for real-world large-scale geospatial images.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Arrays</subject><subject>Bayesian analysis</subject><subject>Co-design</subject><subject>Computer architecture</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Data processing</subject><subject>Embedded systems</subject><subject>Field programmable gate arrays</subject><subject>Image enhancement</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Microprocessors</subject><subject>Multimedia Information Systems</subject><subject>Original Research Paper</subject><subject>Pattern Recognition</subject><subject>Real time</subject><subject>Regularization</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UUFu2zAQFIoUqJP2Ab0R6FnpUpQo6egaSVrAQC6-EyS1kmnYpLukCigf6jdDw0V6ymHBBXdmdsgpiq8c7jlA-z1y3jR1CTxXXfNy-VCseCd52VW8v3nrAT4VtzEeAGQrRbMq_q49w3F01qFPLC4xhaOzTBPphU3khtLoiAOLiWabZkIWRpb2yCiYOSb2Qy8YnfaMcJqPmtyLTi54ltDuvfs9IxsD5aE-lsmdkKHfa2-zoDvpyfmJOc_mfEFJu4vIKSRkEX28zND_cRT8KVv7XHwc9THil3_nXbF7fNhtfpbb56dfm_W2tILLVA5GCNsjtINsOtNDD3asxDAIYYyBhjeSm66poTJy1CCroWvbWvBaAkoOg7grvl1lzxSy-ZjUIczk80ZV9fkPW9H3XUbxK8pSiJFwVGfK76FFcVCXONQ1DpXjUJc41JI51ZUTM9ZPSP-V3ye9AlWLke4</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Castillo Atoche, A.</creator><creator>Carrasco Alvarez, R.</creator><creator>Palma Marrufo, O.</creator><creator>Vázquez Castillo, J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171201</creationdate><title>An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment</title><author>Castillo Atoche, A. ; Carrasco Alvarez, R. ; Palma Marrufo, O. ; Vázquez Castillo, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Arrays</topic><topic>Bayesian analysis</topic><topic>Co-design</topic><topic>Computer architecture</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Data processing</topic><topic>Embedded systems</topic><topic>Field programmable gate arrays</topic><topic>Image enhancement</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Microprocessors</topic><topic>Multimedia Information Systems</topic><topic>Original Research Paper</topic><topic>Pattern Recognition</topic><topic>Real time</topic><topic>Regularization</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo Atoche, A.</creatorcontrib><creatorcontrib>Carrasco Alvarez, R.</creatorcontrib><creatorcontrib>Palma Marrufo, O.</creatorcontrib><creatorcontrib>Vázquez Castillo, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo Atoche, A.</au><au>Carrasco Alvarez, R.</au><au>Palma Marrufo, O.</au><au>Vázquez Castillo, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>13</volume><issue>4</issue><spage>783</spage><epage>796</epage><pages>783-796</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>In this paper, we address a hardware implementation of the efficient robust Bayesian regularization architecture for the real-time enhancement of large-scale remote sensing (RS) imaging. The efficient sense of the proposed architecture is related to the high-performance embedded implementation that is achieved with the aggregation of parallel computing and systolic array design techniques in a novel grid connected-based accelerator. Then, the developed high-speed accelerator is integrated with an embedded processor via the HW/SW co-design paradigm. The presented approach is used for solving RS image enhancement/reconstruction of the ill-conditioned inverse spatial spectrum pattern estimation problems via an interesting low-cost high-performance embedded computing solution. Finally, we show the achieved results and how we drastically reduced the computational load for real-world large-scale geospatial images.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-014-0441-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2017-12, Vol.13 (4), p.783-796
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_2918673998
source Springer Nature
subjects Algorithms
Approximation
Arrays
Bayesian analysis
Co-design
Computer architecture
Computer Graphics
Computer Science
Data processing
Embedded systems
Field programmable gate arrays
Image enhancement
Image Processing and Computer Vision
Image reconstruction
Inverse problems
Microprocessors
Multimedia Information Systems
Original Research Paper
Pattern Recognition
Real time
Regularization
Remote sensing
Robustness
Signal processing
Signal,Image and Speech Processing
title An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20systolic%20array%20grid-based%20structure%20of%20the%20robust%20Bayesian%20regularization%20technique%20for%20real-time%20enhanced%20imaging%20in%20uncertain%20remote%20sensing%20environment&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Castillo%20Atoche,%20A.&rft.date=2017-12-01&rft.volume=13&rft.issue=4&rft.spage=783&rft.epage=796&rft.pages=783-796&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-014-0441-y&rft_dat=%3Cproquest_cross%3E2918673998%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918673998&rft_id=info:pmid/&rfr_iscdi=true