Loading…
An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment
In this paper, we address a hardware implementation of the efficient robust Bayesian regularization architecture for the real-time enhancement of large-scale remote sensing (RS) imaging. The efficient sense of the proposed architecture is related to the high-performance embedded implementation that...
Saved in:
Published in: | Journal of real-time image processing 2017-12, Vol.13 (4), p.783-796 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3 |
container_end_page | 796 |
container_issue | 4 |
container_start_page | 783 |
container_title | Journal of real-time image processing |
container_volume | 13 |
creator | Castillo Atoche, A. Carrasco Alvarez, R. Palma Marrufo, O. Vázquez Castillo, J. |
description | In this paper, we address a hardware implementation of the efficient robust Bayesian regularization architecture for the real-time enhancement of large-scale remote sensing (RS) imaging. The efficient sense of the proposed architecture is related to the high-performance embedded implementation that is achieved with the aggregation of parallel computing and systolic array design techniques in a novel grid connected-based accelerator. Then, the developed high-speed accelerator is integrated with an embedded processor via the HW/SW co-design paradigm. The presented approach is used for solving RS image enhancement/reconstruction of the ill-conditioned inverse spatial spectrum pattern estimation problems via an interesting low-cost high-performance embedded computing solution. Finally, we show the achieved results and how we drastically reduced the computational load for real-world large-scale geospatial images. |
doi_str_mv | 10.1007/s11554-014-0441-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918673998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918673998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3</originalsourceid><addsrcrecordid>eNp1UUFu2zAQFIoUqJP2Ab0R6FnpUpQo6egaSVrAQC6-EyS1kmnYpLukCigf6jdDw0V6ymHBBXdmdsgpiq8c7jlA-z1y3jR1CTxXXfNy-VCseCd52VW8v3nrAT4VtzEeAGQrRbMq_q49w3F01qFPLC4xhaOzTBPphU3khtLoiAOLiWabZkIWRpb2yCiYOSb2Qy8YnfaMcJqPmtyLTi54ltDuvfs9IxsD5aE-lsmdkKHfa2-zoDvpyfmJOc_mfEFJu4vIKSRkEX28zND_cRT8KVv7XHwc9THil3_nXbF7fNhtfpbb56dfm_W2tILLVA5GCNsjtINsOtNDD3asxDAIYYyBhjeSm66poTJy1CCroWvbWvBaAkoOg7grvl1lzxSy-ZjUIczk80ZV9fkPW9H3XUbxK8pSiJFwVGfK76FFcVCXONQ1DpXjUJc41JI51ZUTM9ZPSP-V3ye9AlWLke4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918673998</pqid></control><display><type>article</type><title>An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment</title><source>Springer Nature</source><creator>Castillo Atoche, A. ; Carrasco Alvarez, R. ; Palma Marrufo, O. ; Vázquez Castillo, J.</creator><creatorcontrib>Castillo Atoche, A. ; Carrasco Alvarez, R. ; Palma Marrufo, O. ; Vázquez Castillo, J.</creatorcontrib><description>In this paper, we address a hardware implementation of the efficient robust Bayesian regularization architecture for the real-time enhancement of large-scale remote sensing (RS) imaging. The efficient sense of the proposed architecture is related to the high-performance embedded implementation that is achieved with the aggregation of parallel computing and systolic array design techniques in a novel grid connected-based accelerator. Then, the developed high-speed accelerator is integrated with an embedded processor via the HW/SW co-design paradigm. The presented approach is used for solving RS image enhancement/reconstruction of the ill-conditioned inverse spatial spectrum pattern estimation problems via an interesting low-cost high-performance embedded computing solution. Finally, we show the achieved results and how we drastically reduced the computational load for real-world large-scale geospatial images.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-014-0441-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Approximation ; Arrays ; Bayesian analysis ; Co-design ; Computer architecture ; Computer Graphics ; Computer Science ; Data processing ; Embedded systems ; Field programmable gate arrays ; Image enhancement ; Image Processing and Computer Vision ; Image reconstruction ; Inverse problems ; Microprocessors ; Multimedia Information Systems ; Original Research Paper ; Pattern Recognition ; Real time ; Regularization ; Remote sensing ; Robustness ; Signal processing ; Signal,Image and Speech Processing</subject><ispartof>Journal of real-time image processing, 2017-12, Vol.13 (4), p.783-796</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3</citedby><cites>FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castillo Atoche, A.</creatorcontrib><creatorcontrib>Carrasco Alvarez, R.</creatorcontrib><creatorcontrib>Palma Marrufo, O.</creatorcontrib><creatorcontrib>Vázquez Castillo, J.</creatorcontrib><title>An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>In this paper, we address a hardware implementation of the efficient robust Bayesian regularization architecture for the real-time enhancement of large-scale remote sensing (RS) imaging. The efficient sense of the proposed architecture is related to the high-performance embedded implementation that is achieved with the aggregation of parallel computing and systolic array design techniques in a novel grid connected-based accelerator. Then, the developed high-speed accelerator is integrated with an embedded processor via the HW/SW co-design paradigm. The presented approach is used for solving RS image enhancement/reconstruction of the ill-conditioned inverse spatial spectrum pattern estimation problems via an interesting low-cost high-performance embedded computing solution. Finally, we show the achieved results and how we drastically reduced the computational load for real-world large-scale geospatial images.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Arrays</subject><subject>Bayesian analysis</subject><subject>Co-design</subject><subject>Computer architecture</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Data processing</subject><subject>Embedded systems</subject><subject>Field programmable gate arrays</subject><subject>Image enhancement</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Microprocessors</subject><subject>Multimedia Information Systems</subject><subject>Original Research Paper</subject><subject>Pattern Recognition</subject><subject>Real time</subject><subject>Regularization</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UUFu2zAQFIoUqJP2Ab0R6FnpUpQo6egaSVrAQC6-EyS1kmnYpLukCigf6jdDw0V6ymHBBXdmdsgpiq8c7jlA-z1y3jR1CTxXXfNy-VCseCd52VW8v3nrAT4VtzEeAGQrRbMq_q49w3F01qFPLC4xhaOzTBPphU3khtLoiAOLiWabZkIWRpb2yCiYOSb2Qy8YnfaMcJqPmtyLTi54ltDuvfs9IxsD5aE-lsmdkKHfa2-zoDvpyfmJOc_mfEFJu4vIKSRkEX28zND_cRT8KVv7XHwc9THil3_nXbF7fNhtfpbb56dfm_W2tILLVA5GCNsjtINsOtNDD3asxDAIYYyBhjeSm66poTJy1CCroWvbWvBaAkoOg7grvl1lzxSy-ZjUIczk80ZV9fkPW9H3XUbxK8pSiJFwVGfK76FFcVCXONQ1DpXjUJc41JI51ZUTM9ZPSP-V3ye9AlWLke4</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Castillo Atoche, A.</creator><creator>Carrasco Alvarez, R.</creator><creator>Palma Marrufo, O.</creator><creator>Vázquez Castillo, J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171201</creationdate><title>An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment</title><author>Castillo Atoche, A. ; Carrasco Alvarez, R. ; Palma Marrufo, O. ; Vázquez Castillo, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Arrays</topic><topic>Bayesian analysis</topic><topic>Co-design</topic><topic>Computer architecture</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Data processing</topic><topic>Embedded systems</topic><topic>Field programmable gate arrays</topic><topic>Image enhancement</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Microprocessors</topic><topic>Multimedia Information Systems</topic><topic>Original Research Paper</topic><topic>Pattern Recognition</topic><topic>Real time</topic><topic>Regularization</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo Atoche, A.</creatorcontrib><creatorcontrib>Carrasco Alvarez, R.</creatorcontrib><creatorcontrib>Palma Marrufo, O.</creatorcontrib><creatorcontrib>Vázquez Castillo, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo Atoche, A.</au><au>Carrasco Alvarez, R.</au><au>Palma Marrufo, O.</au><au>Vázquez Castillo, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>13</volume><issue>4</issue><spage>783</spage><epage>796</epage><pages>783-796</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>In this paper, we address a hardware implementation of the efficient robust Bayesian regularization architecture for the real-time enhancement of large-scale remote sensing (RS) imaging. The efficient sense of the proposed architecture is related to the high-performance embedded implementation that is achieved with the aggregation of parallel computing and systolic array design techniques in a novel grid connected-based accelerator. Then, the developed high-speed accelerator is integrated with an embedded processor via the HW/SW co-design paradigm. The presented approach is used for solving RS image enhancement/reconstruction of the ill-conditioned inverse spatial spectrum pattern estimation problems via an interesting low-cost high-performance embedded computing solution. Finally, we show the achieved results and how we drastically reduced the computational load for real-world large-scale geospatial images.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-014-0441-y</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-8200 |
ispartof | Journal of real-time image processing, 2017-12, Vol.13 (4), p.783-796 |
issn | 1861-8200 1861-8219 |
language | eng |
recordid | cdi_proquest_journals_2918673998 |
source | Springer Nature |
subjects | Algorithms Approximation Arrays Bayesian analysis Co-design Computer architecture Computer Graphics Computer Science Data processing Embedded systems Field programmable gate arrays Image enhancement Image Processing and Computer Vision Image reconstruction Inverse problems Microprocessors Multimedia Information Systems Original Research Paper Pattern Recognition Real time Regularization Remote sensing Robustness Signal processing Signal,Image and Speech Processing |
title | An efficient systolic array grid-based structure of the robust Bayesian regularization technique for real-time enhanced imaging in uncertain remote sensing environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20systolic%20array%20grid-based%20structure%20of%20the%20robust%20Bayesian%20regularization%20technique%20for%20real-time%20enhanced%20imaging%20in%20uncertain%20remote%20sensing%20environment&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Castillo%20Atoche,%20A.&rft.date=2017-12-01&rft.volume=13&rft.issue=4&rft.spage=783&rft.epage=796&rft.pages=783-796&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-014-0441-y&rft_dat=%3Cproquest_cross%3E2918673998%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-db33c9e07d658b9090cf23dd33bbb051561b85402b6fa062d877431460e610d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918673998&rft_id=info:pmid/&rfr_iscdi=true |