Loading…
Real-time moving object detection algorithm on high-resolution videos using GPUs
Modern imaging sensors with higher megapixel resolution and frame rates are being increasingly used for wide-area video surveillance (VS). This has produced an accelerated demand for high-performance implementation of VS algorithms for real-time processing of high-resolution videos. The emergence of...
Saved in:
Published in: | Journal of real-time image processing 2016-01, Vol.11 (1), p.93-109 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553 |
container_end_page | 109 |
container_issue | 1 |
container_start_page | 93 |
container_title | Journal of real-time image processing |
container_volume | 11 |
creator | Kumar, Praveen Singhal, Ayush Mehta, Sanyam Mittal, Ankush |
description | Modern imaging sensors with higher megapixel resolution and frame rates are being increasingly used for wide-area video surveillance (VS). This has produced an accelerated demand for high-performance implementation of VS algorithms for real-time processing of high-resolution videos. The emergence of multi-core architectures and graphics processing units (GPUs) provides energy and cost-efficient platform to meet the real-time processing needs by extracting data level parallelism in such algorithms. However, the potential benefits of these architectures can only be realized by developing fine-grained parallelization strategies and algorithm innovation. This paper describes parallel implementation of video object detection algorithms like Gaussians mixture model (GMM) for background modelling, morphological operations for post-processing and connected component labelling (CCL) for blob labelling. Novel parallelization strategies and fine-grained optimization techniques are described for fully exploiting the computational capacity of CUDA cores on GPUs. Experimental results show parallel GPU implementation achieves significant speedups of ~250× for binary morphology, ~15× for GMM and ~2× for CCL when compared to sequential implementation running on Intel Xeon processor, resulting in processing of 22.3 frames per second for HD videos. |
doi_str_mv | 10.1007/s11554-012-0309-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918674214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918674214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWv0AdwHXo_dOMpNkKUWrULCIXQ953KQpSabOJIX-vVMjunJzn-fcx2HsFuEeAeIHhyhlxAEFhxBSfjxjM0wU8kRgev4bA1yyK-d2ACpWoZyx9TtlLR-ajoLOHJq-Dky-o2IIShq8a0wfZG1tbDNsu8An26beckvOtON389CUZFwwuhN1ud64a3ZRZa2jmx8_Z5vnp4_FC1-9LV8XjytehIkaeFFBlaWEGeWR8gYrpUSpQsBUSBGKHMLMX055TCh9RZaRr6YJgURZSBnO2d00d2_N50hu0Dsz2t6v1CL138aRwMijcEIV1jhnqdJ723SZPWoEfRJOT8JpL5w-CaePniMmjvPYvib7N_l_0hcmc3CI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918674214</pqid></control><display><type>article</type><title>Real-time moving object detection algorithm on high-resolution videos using GPUs</title><source>Springer Nature</source><creator>Kumar, Praveen ; Singhal, Ayush ; Mehta, Sanyam ; Mittal, Ankush</creator><creatorcontrib>Kumar, Praveen ; Singhal, Ayush ; Mehta, Sanyam ; Mittal, Ankush</creatorcontrib><description>Modern imaging sensors with higher megapixel resolution and frame rates are being increasingly used for wide-area video surveillance (VS). This has produced an accelerated demand for high-performance implementation of VS algorithms for real-time processing of high-resolution videos. The emergence of multi-core architectures and graphics processing units (GPUs) provides energy and cost-efficient platform to meet the real-time processing needs by extracting data level parallelism in such algorithms. However, the potential benefits of these architectures can only be realized by developing fine-grained parallelization strategies and algorithm innovation. This paper describes parallel implementation of video object detection algorithms like Gaussians mixture model (GMM) for background modelling, morphological operations for post-processing and connected component labelling (CCL) for blob labelling. Novel parallelization strategies and fine-grained optimization techniques are described for fully exploiting the computational capacity of CUDA cores on GPUs. Experimental results show parallel GPU implementation achieves significant speedups of ~250× for binary morphology, ~15× for GMM and ~2× for CCL when compared to sequential implementation running on Intel Xeon processor, resulting in processing of 22.3 frames per second for HD videos.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-012-0309-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Bandwidths ; Cameras ; Computer Graphics ; Computer Science ; Frames per second ; Graphics processing units ; High resolution ; Image Processing and Computer Vision ; Labeling ; Microprocessors ; Morphology ; Moving object recognition ; Multimedia Information Systems ; Original Research Paper ; Parallel processing ; Pattern Recognition ; Real time ; Signal,Image and Speech Processing ; Surveillance ; Video ; Workloads</subject><ispartof>Journal of real-time image processing, 2016-01, Vol.11 (1), p.93-109</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553</citedby><cites>FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Singhal, Ayush</creatorcontrib><creatorcontrib>Mehta, Sanyam</creatorcontrib><creatorcontrib>Mittal, Ankush</creatorcontrib><title>Real-time moving object detection algorithm on high-resolution videos using GPUs</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Modern imaging sensors with higher megapixel resolution and frame rates are being increasingly used for wide-area video surveillance (VS). This has produced an accelerated demand for high-performance implementation of VS algorithms for real-time processing of high-resolution videos. The emergence of multi-core architectures and graphics processing units (GPUs) provides energy and cost-efficient platform to meet the real-time processing needs by extracting data level parallelism in such algorithms. However, the potential benefits of these architectures can only be realized by developing fine-grained parallelization strategies and algorithm innovation. This paper describes parallel implementation of video object detection algorithms like Gaussians mixture model (GMM) for background modelling, morphological operations for post-processing and connected component labelling (CCL) for blob labelling. Novel parallelization strategies and fine-grained optimization techniques are described for fully exploiting the computational capacity of CUDA cores on GPUs. Experimental results show parallel GPU implementation achieves significant speedups of ~250× for binary morphology, ~15× for GMM and ~2× for CCL when compared to sequential implementation running on Intel Xeon processor, resulting in processing of 22.3 frames per second for HD videos.</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Cameras</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Frames per second</subject><subject>Graphics processing units</subject><subject>High resolution</subject><subject>Image Processing and Computer Vision</subject><subject>Labeling</subject><subject>Microprocessors</subject><subject>Morphology</subject><subject>Moving object recognition</subject><subject>Multimedia Information Systems</subject><subject>Original Research Paper</subject><subject>Parallel processing</subject><subject>Pattern Recognition</subject><subject>Real time</subject><subject>Signal,Image and Speech Processing</subject><subject>Surveillance</subject><subject>Video</subject><subject>Workloads</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKw0AUHUTBWv0AdwHXo_dOMpNkKUWrULCIXQ953KQpSabOJIX-vVMjunJzn-fcx2HsFuEeAeIHhyhlxAEFhxBSfjxjM0wU8kRgev4bA1yyK-d2ACpWoZyx9TtlLR-ajoLOHJq-Dky-o2IIShq8a0wfZG1tbDNsu8An26beckvOtON389CUZFwwuhN1ud64a3ZRZa2jmx8_Z5vnp4_FC1-9LV8XjytehIkaeFFBlaWEGeWR8gYrpUSpQsBUSBGKHMLMX055TCh9RZaRr6YJgURZSBnO2d00d2_N50hu0Dsz2t6v1CL138aRwMijcEIV1jhnqdJ723SZPWoEfRJOT8JpL5w-CaePniMmjvPYvib7N_l_0hcmc3CI</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Kumar, Praveen</creator><creator>Singhal, Ayush</creator><creator>Mehta, Sanyam</creator><creator>Mittal, Ankush</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160101</creationdate><title>Real-time moving object detection algorithm on high-resolution videos using GPUs</title><author>Kumar, Praveen ; Singhal, Ayush ; Mehta, Sanyam ; Mittal, Ankush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Cameras</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Frames per second</topic><topic>Graphics processing units</topic><topic>High resolution</topic><topic>Image Processing and Computer Vision</topic><topic>Labeling</topic><topic>Microprocessors</topic><topic>Morphology</topic><topic>Moving object recognition</topic><topic>Multimedia Information Systems</topic><topic>Original Research Paper</topic><topic>Parallel processing</topic><topic>Pattern Recognition</topic><topic>Real time</topic><topic>Signal,Image and Speech Processing</topic><topic>Surveillance</topic><topic>Video</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Singhal, Ayush</creatorcontrib><creatorcontrib>Mehta, Sanyam</creatorcontrib><creatorcontrib>Mittal, Ankush</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Praveen</au><au>Singhal, Ayush</au><au>Mehta, Sanyam</au><au>Mittal, Ankush</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time moving object detection algorithm on high-resolution videos using GPUs</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>93</spage><epage>109</epage><pages>93-109</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Modern imaging sensors with higher megapixel resolution and frame rates are being increasingly used for wide-area video surveillance (VS). This has produced an accelerated demand for high-performance implementation of VS algorithms for real-time processing of high-resolution videos. The emergence of multi-core architectures and graphics processing units (GPUs) provides energy and cost-efficient platform to meet the real-time processing needs by extracting data level parallelism in such algorithms. However, the potential benefits of these architectures can only be realized by developing fine-grained parallelization strategies and algorithm innovation. This paper describes parallel implementation of video object detection algorithms like Gaussians mixture model (GMM) for background modelling, morphological operations for post-processing and connected component labelling (CCL) for blob labelling. Novel parallelization strategies and fine-grained optimization techniques are described for fully exploiting the computational capacity of CUDA cores on GPUs. Experimental results show parallel GPU implementation achieves significant speedups of ~250× for binary morphology, ~15× for GMM and ~2× for CCL when compared to sequential implementation running on Intel Xeon processor, resulting in processing of 22.3 frames per second for HD videos.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-012-0309-y</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-8200 |
ispartof | Journal of real-time image processing, 2016-01, Vol.11 (1), p.93-109 |
issn | 1861-8200 1861-8219 |
language | eng |
recordid | cdi_proquest_journals_2918674214 |
source | Springer Nature |
subjects | Algorithms Bandwidths Cameras Computer Graphics Computer Science Frames per second Graphics processing units High resolution Image Processing and Computer Vision Labeling Microprocessors Morphology Moving object recognition Multimedia Information Systems Original Research Paper Parallel processing Pattern Recognition Real time Signal,Image and Speech Processing Surveillance Video Workloads |
title | Real-time moving object detection algorithm on high-resolution videos using GPUs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20moving%20object%20detection%20algorithm%20on%20high-resolution%20videos%20using%20GPUs&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Kumar,%20Praveen&rft.date=2016-01-01&rft.volume=11&rft.issue=1&rft.spage=93&rft.epage=109&rft.pages=93-109&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-012-0309-y&rft_dat=%3Cproquest_cross%3E2918674214%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918674214&rft_id=info:pmid/&rfr_iscdi=true |