Loading…

Real-time moving object detection algorithm on high-resolution videos using GPUs

Modern imaging sensors with higher megapixel resolution and frame rates are being increasingly used for wide-area video surveillance (VS). This has produced an accelerated demand for high-performance implementation of VS algorithms for real-time processing of high-resolution videos. The emergence of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of real-time image processing 2016-01, Vol.11 (1), p.93-109
Main Authors: Kumar, Praveen, Singhal, Ayush, Mehta, Sanyam, Mittal, Ankush
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553
cites cdi_FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553
container_end_page 109
container_issue 1
container_start_page 93
container_title Journal of real-time image processing
container_volume 11
creator Kumar, Praveen
Singhal, Ayush
Mehta, Sanyam
Mittal, Ankush
description Modern imaging sensors with higher megapixel resolution and frame rates are being increasingly used for wide-area video surveillance (VS). This has produced an accelerated demand for high-performance implementation of VS algorithms for real-time processing of high-resolution videos. The emergence of multi-core architectures and graphics processing units (GPUs) provides energy and cost-efficient platform to meet the real-time processing needs by extracting data level parallelism in such algorithms. However, the potential benefits of these architectures can only be realized by developing fine-grained parallelization strategies and algorithm innovation. This paper describes parallel implementation of video object detection algorithms like Gaussians mixture model (GMM) for background modelling, morphological operations for post-processing and connected component labelling (CCL) for blob labelling. Novel parallelization strategies and fine-grained optimization techniques are described for fully exploiting the computational capacity of CUDA cores on GPUs. Experimental results show parallel GPU implementation achieves significant speedups of ~250× for binary morphology, ~15× for GMM and ~2× for CCL when compared to sequential implementation running on Intel Xeon processor, resulting in processing of 22.3 frames per second for HD videos.
doi_str_mv 10.1007/s11554-012-0309-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918674214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918674214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWv0AdwHXo_dOMpNkKUWrULCIXQ953KQpSabOJIX-vVMjunJzn-fcx2HsFuEeAeIHhyhlxAEFhxBSfjxjM0wU8kRgev4bA1yyK-d2ACpWoZyx9TtlLR-ajoLOHJq-Dky-o2IIShq8a0wfZG1tbDNsu8An26beckvOtON389CUZFwwuhN1ud64a3ZRZa2jmx8_Z5vnp4_FC1-9LV8XjytehIkaeFFBlaWEGeWR8gYrpUSpQsBUSBGKHMLMX055TCh9RZaRr6YJgURZSBnO2d00d2_N50hu0Dsz2t6v1CL138aRwMijcEIV1jhnqdJ723SZPWoEfRJOT8JpL5w-CaePniMmjvPYvib7N_l_0hcmc3CI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918674214</pqid></control><display><type>article</type><title>Real-time moving object detection algorithm on high-resolution videos using GPUs</title><source>Springer Nature</source><creator>Kumar, Praveen ; Singhal, Ayush ; Mehta, Sanyam ; Mittal, Ankush</creator><creatorcontrib>Kumar, Praveen ; Singhal, Ayush ; Mehta, Sanyam ; Mittal, Ankush</creatorcontrib><description>Modern imaging sensors with higher megapixel resolution and frame rates are being increasingly used for wide-area video surveillance (VS). This has produced an accelerated demand for high-performance implementation of VS algorithms for real-time processing of high-resolution videos. The emergence of multi-core architectures and graphics processing units (GPUs) provides energy and cost-efficient platform to meet the real-time processing needs by extracting data level parallelism in such algorithms. However, the potential benefits of these architectures can only be realized by developing fine-grained parallelization strategies and algorithm innovation. This paper describes parallel implementation of video object detection algorithms like Gaussians mixture model (GMM) for background modelling, morphological operations for post-processing and connected component labelling (CCL) for blob labelling. Novel parallelization strategies and fine-grained optimization techniques are described for fully exploiting the computational capacity of CUDA cores on GPUs. Experimental results show parallel GPU implementation achieves significant speedups of ~250× for binary morphology, ~15× for GMM and ~2× for CCL when compared to sequential implementation running on Intel Xeon processor, resulting in processing of 22.3 frames per second for HD videos.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-012-0309-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Bandwidths ; Cameras ; Computer Graphics ; Computer Science ; Frames per second ; Graphics processing units ; High resolution ; Image Processing and Computer Vision ; Labeling ; Microprocessors ; Morphology ; Moving object recognition ; Multimedia Information Systems ; Original Research Paper ; Parallel processing ; Pattern Recognition ; Real time ; Signal,Image and Speech Processing ; Surveillance ; Video ; Workloads</subject><ispartof>Journal of real-time image processing, 2016-01, Vol.11 (1), p.93-109</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553</citedby><cites>FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Singhal, Ayush</creatorcontrib><creatorcontrib>Mehta, Sanyam</creatorcontrib><creatorcontrib>Mittal, Ankush</creatorcontrib><title>Real-time moving object detection algorithm on high-resolution videos using GPUs</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Modern imaging sensors with higher megapixel resolution and frame rates are being increasingly used for wide-area video surveillance (VS). This has produced an accelerated demand for high-performance implementation of VS algorithms for real-time processing of high-resolution videos. The emergence of multi-core architectures and graphics processing units (GPUs) provides energy and cost-efficient platform to meet the real-time processing needs by extracting data level parallelism in such algorithms. However, the potential benefits of these architectures can only be realized by developing fine-grained parallelization strategies and algorithm innovation. This paper describes parallel implementation of video object detection algorithms like Gaussians mixture model (GMM) for background modelling, morphological operations for post-processing and connected component labelling (CCL) for blob labelling. Novel parallelization strategies and fine-grained optimization techniques are described for fully exploiting the computational capacity of CUDA cores on GPUs. Experimental results show parallel GPU implementation achieves significant speedups of ~250× for binary morphology, ~15× for GMM and ~2× for CCL when compared to sequential implementation running on Intel Xeon processor, resulting in processing of 22.3 frames per second for HD videos.</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Cameras</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Frames per second</subject><subject>Graphics processing units</subject><subject>High resolution</subject><subject>Image Processing and Computer Vision</subject><subject>Labeling</subject><subject>Microprocessors</subject><subject>Morphology</subject><subject>Moving object recognition</subject><subject>Multimedia Information Systems</subject><subject>Original Research Paper</subject><subject>Parallel processing</subject><subject>Pattern Recognition</subject><subject>Real time</subject><subject>Signal,Image and Speech Processing</subject><subject>Surveillance</subject><subject>Video</subject><subject>Workloads</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKw0AUHUTBWv0AdwHXo_dOMpNkKUWrULCIXQ953KQpSabOJIX-vVMjunJzn-fcx2HsFuEeAeIHhyhlxAEFhxBSfjxjM0wU8kRgev4bA1yyK-d2ACpWoZyx9TtlLR-ajoLOHJq-Dky-o2IIShq8a0wfZG1tbDNsu8An26beckvOtON389CUZFwwuhN1ud64a3ZRZa2jmx8_Z5vnp4_FC1-9LV8XjytehIkaeFFBlaWEGeWR8gYrpUSpQsBUSBGKHMLMX055TCh9RZaRr6YJgURZSBnO2d00d2_N50hu0Dsz2t6v1CL138aRwMijcEIV1jhnqdJ723SZPWoEfRJOT8JpL5w-CaePniMmjvPYvib7N_l_0hcmc3CI</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Kumar, Praveen</creator><creator>Singhal, Ayush</creator><creator>Mehta, Sanyam</creator><creator>Mittal, Ankush</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160101</creationdate><title>Real-time moving object detection algorithm on high-resolution videos using GPUs</title><author>Kumar, Praveen ; Singhal, Ayush ; Mehta, Sanyam ; Mittal, Ankush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Cameras</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Frames per second</topic><topic>Graphics processing units</topic><topic>High resolution</topic><topic>Image Processing and Computer Vision</topic><topic>Labeling</topic><topic>Microprocessors</topic><topic>Morphology</topic><topic>Moving object recognition</topic><topic>Multimedia Information Systems</topic><topic>Original Research Paper</topic><topic>Parallel processing</topic><topic>Pattern Recognition</topic><topic>Real time</topic><topic>Signal,Image and Speech Processing</topic><topic>Surveillance</topic><topic>Video</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Singhal, Ayush</creatorcontrib><creatorcontrib>Mehta, Sanyam</creatorcontrib><creatorcontrib>Mittal, Ankush</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Praveen</au><au>Singhal, Ayush</au><au>Mehta, Sanyam</au><au>Mittal, Ankush</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time moving object detection algorithm on high-resolution videos using GPUs</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>93</spage><epage>109</epage><pages>93-109</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Modern imaging sensors with higher megapixel resolution and frame rates are being increasingly used for wide-area video surveillance (VS). This has produced an accelerated demand for high-performance implementation of VS algorithms for real-time processing of high-resolution videos. The emergence of multi-core architectures and graphics processing units (GPUs) provides energy and cost-efficient platform to meet the real-time processing needs by extracting data level parallelism in such algorithms. However, the potential benefits of these architectures can only be realized by developing fine-grained parallelization strategies and algorithm innovation. This paper describes parallel implementation of video object detection algorithms like Gaussians mixture model (GMM) for background modelling, morphological operations for post-processing and connected component labelling (CCL) for blob labelling. Novel parallelization strategies and fine-grained optimization techniques are described for fully exploiting the computational capacity of CUDA cores on GPUs. Experimental results show parallel GPU implementation achieves significant speedups of ~250× for binary morphology, ~15× for GMM and ~2× for CCL when compared to sequential implementation running on Intel Xeon processor, resulting in processing of 22.3 frames per second for HD videos.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-012-0309-y</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2016-01, Vol.11 (1), p.93-109
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_2918674214
source Springer Nature
subjects Algorithms
Bandwidths
Cameras
Computer Graphics
Computer Science
Frames per second
Graphics processing units
High resolution
Image Processing and Computer Vision
Labeling
Microprocessors
Morphology
Moving object recognition
Multimedia Information Systems
Original Research Paper
Parallel processing
Pattern Recognition
Real time
Signal,Image and Speech Processing
Surveillance
Video
Workloads
title Real-time moving object detection algorithm on high-resolution videos using GPUs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20moving%20object%20detection%20algorithm%20on%20high-resolution%20videos%20using%20GPUs&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Kumar,%20Praveen&rft.date=2016-01-01&rft.volume=11&rft.issue=1&rft.spage=93&rft.epage=109&rft.pages=93-109&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-012-0309-y&rft_dat=%3Cproquest_cross%3E2918674214%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-cf0fa9e1aeb46aeb1f662d6301925232b03a219eb7e152525d423298e0515c553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918674214&rft_id=info:pmid/&rfr_iscdi=true