Loading…

Heterogeneous CPU–GPU tracking–learning–detection (H-TLD) for real-time object tracking

The recently proposed tracking–learning–detection (TLD) method has become a popular visual tracking algorithm as it was shown to provide promising long-term tracking results. On the other hand, the high computational cost of the algorithm prevents it being used at higher resolutions and frame rates....

Full description

Saved in:
Bibliographic Details
Published in:Journal of real-time image processing 2019-04, Vol.16 (2), p.339-353
Main Authors: Gurcan, Ilker, Temizel, Alptekin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-278758f545d5cf0c280a698902d041456e0a5d1784736841e9896fd4bce5ebac3
cites cdi_FETCH-LOGICAL-c316t-278758f545d5cf0c280a698902d041456e0a5d1784736841e9896fd4bce5ebac3
container_end_page 353
container_issue 2
container_start_page 339
container_title Journal of real-time image processing
container_volume 16
creator Gurcan, Ilker
Temizel, Alptekin
description The recently proposed tracking–learning–detection (TLD) method has become a popular visual tracking algorithm as it was shown to provide promising long-term tracking results. On the other hand, the high computational cost of the algorithm prevents it being used at higher resolutions and frame rates. In this paper, we describe the design and implementation of a heterogeneous CPU–GPU TLD (H-TLD) solution using OpenMP and CUDA. Leveraging the advantages of the heterogeneous architecture, serial parts are run asynchronously on the CPU while the most computationally costly parts are parallelized and run on the GPU. Design of the solution ensures keeping data transfers between CPU and GPU at a minimum and applying stream compaction and overlapping data transfer with computation whenever such transfers are necessary. The workload is balanced for a uniform work distribution across the GPU multiprocessors. Results show that 10.25 times speed-up is achieved at 1920  ×  1080 resolution compared to the baseline TLD. The source code has been made publicly available to download from the following address: http://gpuresearch.ii.metu.edu.tr/codes/ .
doi_str_mv 10.1007/s11554-015-0538-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918675797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918675797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-278758f545d5cf0c280a698902d041456e0a5d1784736841e9896fd4bce5ebac3</originalsourceid><addsrcrecordid>eNp1UL1OwzAQthBIlMIDsEVigcFwTuKfjKiUFqkSHdoRWa5zqVLauNjp0I134A15ElwFlYnpvtP3c7qPkGsG9wxAPgTGOM8pME6BZ4ruT0iPKcGoSllxesQA5-QihBWAkCLjPfI2xha9W2KDbheSwXT-_fk1ms6T1hv7XjfLuK7R-KaDZVTbtnZNcjums8nTXVI5n3g0a9rWG0zcYhX5o_mSnFVmHfDqd_bJ_Hk4G4zp5HX0MnicUJsx0dJUKslVxXNecluBTRUYUagC0hJylnOBYHjJpMplJlTOMHKiKvOFRY4LY7M-uelyt9597DC0euV2vokndVrE1yWXhYwq1qmsdyF4rPTW1xvj95qBPrSouxZ1bFEfWtT76Ek7T4jaZon-L_l_0w8J5Hcu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918675797</pqid></control><display><type>article</type><title>Heterogeneous CPU–GPU tracking–learning–detection (H-TLD) for real-time object tracking</title><source>Springer Link</source><creator>Gurcan, Ilker ; Temizel, Alptekin</creator><creatorcontrib>Gurcan, Ilker ; Temizel, Alptekin</creatorcontrib><description>The recently proposed tracking–learning–detection (TLD) method has become a popular visual tracking algorithm as it was shown to provide promising long-term tracking results. On the other hand, the high computational cost of the algorithm prevents it being used at higher resolutions and frame rates. In this paper, we describe the design and implementation of a heterogeneous CPU–GPU TLD (H-TLD) solution using OpenMP and CUDA. Leveraging the advantages of the heterogeneous architecture, serial parts are run asynchronously on the CPU while the most computationally costly parts are parallelized and run on the GPU. Design of the solution ensures keeping data transfers between CPU and GPU at a minimum and applying stream compaction and overlapping data transfer with computation whenever such transfers are necessary. The workload is balanced for a uniform work distribution across the GPU multiprocessors. Results show that 10.25 times speed-up is achieved at 1920  ×  1080 resolution compared to the baseline TLD. The source code has been made publicly available to download from the following address: http://gpuresearch.ii.metu.edu.tr/codes/ .</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-015-0538-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Central processing units ; Computer Graphics ; Computer Science ; CPUs ; Data transfer (computers) ; Graphics processing units ; Image Processing and Computer Vision ; Multimedia Information Systems ; Multiprocessing ; Optical tracking ; Optimization ; Original Research Paper ; Pattern Recognition ; Sensors ; Signal,Image and Speech Processing ; Source code</subject><ispartof>Journal of real-time image processing, 2019-04, Vol.16 (2), p.339-353</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-278758f545d5cf0c280a698902d041456e0a5d1784736841e9896fd4bce5ebac3</citedby><cites>FETCH-LOGICAL-c316t-278758f545d5cf0c280a698902d041456e0a5d1784736841e9896fd4bce5ebac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Gurcan, Ilker</creatorcontrib><creatorcontrib>Temizel, Alptekin</creatorcontrib><title>Heterogeneous CPU–GPU tracking–learning–detection (H-TLD) for real-time object tracking</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>The recently proposed tracking–learning–detection (TLD) method has become a popular visual tracking algorithm as it was shown to provide promising long-term tracking results. On the other hand, the high computational cost of the algorithm prevents it being used at higher resolutions and frame rates. In this paper, we describe the design and implementation of a heterogeneous CPU–GPU TLD (H-TLD) solution using OpenMP and CUDA. Leveraging the advantages of the heterogeneous architecture, serial parts are run asynchronously on the CPU while the most computationally costly parts are parallelized and run on the GPU. Design of the solution ensures keeping data transfers between CPU and GPU at a minimum and applying stream compaction and overlapping data transfer with computation whenever such transfers are necessary. The workload is balanced for a uniform work distribution across the GPU multiprocessors. Results show that 10.25 times speed-up is achieved at 1920  ×  1080 resolution compared to the baseline TLD. The source code has been made publicly available to download from the following address: http://gpuresearch.ii.metu.edu.tr/codes/ .</description><subject>Algorithms</subject><subject>Central processing units</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>CPUs</subject><subject>Data transfer (computers)</subject><subject>Graphics processing units</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Multiprocessing</subject><subject>Optical tracking</subject><subject>Optimization</subject><subject>Original Research Paper</subject><subject>Pattern Recognition</subject><subject>Sensors</subject><subject>Signal,Image and Speech Processing</subject><subject>Source code</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UL1OwzAQthBIlMIDsEVigcFwTuKfjKiUFqkSHdoRWa5zqVLauNjp0I134A15ElwFlYnpvtP3c7qPkGsG9wxAPgTGOM8pME6BZ4ruT0iPKcGoSllxesQA5-QihBWAkCLjPfI2xha9W2KDbheSwXT-_fk1ms6T1hv7XjfLuK7R-KaDZVTbtnZNcjums8nTXVI5n3g0a9rWG0zcYhX5o_mSnFVmHfDqd_bJ_Hk4G4zp5HX0MnicUJsx0dJUKslVxXNecluBTRUYUagC0hJylnOBYHjJpMplJlTOMHKiKvOFRY4LY7M-uelyt9597DC0euV2vokndVrE1yWXhYwq1qmsdyF4rPTW1xvj95qBPrSouxZ1bFEfWtT76Ek7T4jaZon-L_l_0w8J5Hcu</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Gurcan, Ilker</creator><creator>Temizel, Alptekin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190401</creationdate><title>Heterogeneous CPU–GPU tracking–learning–detection (H-TLD) for real-time object tracking</title><author>Gurcan, Ilker ; Temizel, Alptekin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-278758f545d5cf0c280a698902d041456e0a5d1784736841e9896fd4bce5ebac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Central processing units</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>CPUs</topic><topic>Data transfer (computers)</topic><topic>Graphics processing units</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Multiprocessing</topic><topic>Optical tracking</topic><topic>Optimization</topic><topic>Original Research Paper</topic><topic>Pattern Recognition</topic><topic>Sensors</topic><topic>Signal,Image and Speech Processing</topic><topic>Source code</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurcan, Ilker</creatorcontrib><creatorcontrib>Temizel, Alptekin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurcan, Ilker</au><au>Temizel, Alptekin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous CPU–GPU tracking–learning–detection (H-TLD) for real-time object tracking</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>16</volume><issue>2</issue><spage>339</spage><epage>353</epage><pages>339-353</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>The recently proposed tracking–learning–detection (TLD) method has become a popular visual tracking algorithm as it was shown to provide promising long-term tracking results. On the other hand, the high computational cost of the algorithm prevents it being used at higher resolutions and frame rates. In this paper, we describe the design and implementation of a heterogeneous CPU–GPU TLD (H-TLD) solution using OpenMP and CUDA. Leveraging the advantages of the heterogeneous architecture, serial parts are run asynchronously on the CPU while the most computationally costly parts are parallelized and run on the GPU. Design of the solution ensures keeping data transfers between CPU and GPU at a minimum and applying stream compaction and overlapping data transfer with computation whenever such transfers are necessary. The workload is balanced for a uniform work distribution across the GPU multiprocessors. Results show that 10.25 times speed-up is achieved at 1920  ×  1080 resolution compared to the baseline TLD. The source code has been made publicly available to download from the following address: http://gpuresearch.ii.metu.edu.tr/codes/ .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-015-0538-y</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2019-04, Vol.16 (2), p.339-353
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_2918675797
source Springer Link
subjects Algorithms
Central processing units
Computer Graphics
Computer Science
CPUs
Data transfer (computers)
Graphics processing units
Image Processing and Computer Vision
Multimedia Information Systems
Multiprocessing
Optical tracking
Optimization
Original Research Paper
Pattern Recognition
Sensors
Signal,Image and Speech Processing
Source code
title Heterogeneous CPU–GPU tracking–learning–detection (H-TLD) for real-time object tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20CPU%E2%80%93GPU%20tracking%E2%80%93learning%E2%80%93detection%20(H-TLD)%20for%20real-time%20object%20tracking&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Gurcan,%20Ilker&rft.date=2019-04-01&rft.volume=16&rft.issue=2&rft.spage=339&rft.epage=353&rft.pages=339-353&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-015-0538-y&rft_dat=%3Cproquest_cross%3E2918675797%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-278758f545d5cf0c280a698902d041456e0a5d1784736841e9896fd4bce5ebac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918675797&rft_id=info:pmid/&rfr_iscdi=true