Loading…

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Microbial desalination cell (MDC) is a promis- ing technology to desalinate water and generate electrical power simultaneously. The objectives of this study were to investigate the desalination performance of monovalent and divalent cations in the MDC, and discuss the effect of ion characteristics,...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of environmental science & engineering 2015-04, Vol.9 (2), p.317-323
Main Authors: Chen, Shanshan, Luo, Haiping, Hou, Yanping, Liu, Guangli, Zhang, Renduo, Qin, Bangyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microbial desalination cell (MDC) is a promis- ing technology to desalinate water and generate electrical power simultaneously. The objectives of this study were to investigate the desalination performance of monovalent and divalent cations in the MDC, and discuss the effect of ion characteristics, ion concentrations, and electrical characteristics. Mixed salt solutions of NaC1, MgC12, KC1, and CaC12 with the same concentration were used in the desalination chamber to study removal of cations. Results showed that in the mixed salt solutions, the electrodialysis desalination rates of cations were: Ca2+ 〉 Mg2+ 〉 Na+ 〉 K+. Higher ionic charges and smaller hydrated ionic radii resulted in higher desalination rates of the cations, in which the ionic charge was more important than the hydrated ionic radius. Mixed solutions of NaC1 and MgC12 with different concentrations were used in the desalination chamber to study the effect of ion concentra- tions. Results showed that when ion concentrations ofNa+ were one-fifth to five times of Mg2~, ion concentration influenced the dialysis more profoundly than electrodia- lysis. With the current densities below a certain value, charge transfer efficiencies became very low and the dialysis was the main process responsible for the desalination. And the phosphate transfer from the anode chamber and potassium transfer from the cathode chamber could balance 1%-3% of the charge transfer in the MDC.
ISSN:2095-2201
2095-221X
DOI:10.1007/s11783-013-0596-y