Loading…

Seasonal contrast in the vertical profiles of aerosol number concentrations and size distributions over India: Implications from RAWEX aircraft campaign

Aircraft measurements of the vertical profiles of aerosol total number concentrations and size distributions (in the size range of 0.5–20 μm) were made over seven geographically diverse locations of the Indian mainland during two contrasting seasons, winter (December 2012) and spring (April–May 2013...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Earth System Science 2019-12, Vol.128 (8), p.225, Article 225
Main Authors: Gogoi, Mukunda M, Lakshmi, N B, Nair, Vijayakumar S, Kompalli, Sobhan Kumar, Moorthy, K Krishna, Babu, S Suresh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aircraft measurements of the vertical profiles of aerosol total number concentrations and size distributions (in the size range of 0.5–20 μm) were made over seven geographically diverse locations of the Indian mainland during two contrasting seasons, winter (December 2012) and spring (April–May 2013), as a part of the regional aerosol warming experiment (RAWEX). Our observations revealed an increase in the vertical extent of aerosol loading during spring having a significant enhancement in coarse mode aerosols in the lower free-troposphere (FT) over western and central parts of India and the Indo-Gangetic plains (IGP). The particulate depolarisation ratio (PDR) derived from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) over the same region showed the presence of dust (including polluted dust) at higher altitudes in spring. Concurrent and collocated measurements of aerosol scattering and absorption properties aboard the aircraft revealed that the FT enhancement in coarse mode aerosol loading during spring is associated with a decrease in single scattering albedo and an increase in columnar absorption aerosol optical depth. This confirms that the elevated layers of coarse mode aerosols seen during spring are absorbing in nature, especially over the IGP. The presence of such coarse-mode absorbing aerosols plays a crucial role in governing the radiation balance over the IGP in spring through the diabatic heating of the upper atmosphere.
ISSN:2347-4327
0253-4126
0973-774X
DOI:10.1007/s12040-019-1246-y