Loading…

A virtual layer of measure based on soft sensors

In this paper it is proposed a method to design and train a layer of soft sensors based on neural networks in order to constitute a virtual layer of measure in a wireless sensor network. Each soft sensor of the layer esteems the missing values of some hardware sensors by using the values obtained fr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ambient intelligence and humanized computing 2017-02, Vol.8 (1), p.69-78
Main Authors: Maniscalco, Umberto, Rizzo, Riccardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-bbfd74418f9ea81ec9b7da84029551740e1865de8f1163b845b95f99bd377e293
cites cdi_FETCH-LOGICAL-c355t-bbfd74418f9ea81ec9b7da84029551740e1865de8f1163b845b95f99bd377e293
container_end_page 78
container_issue 1
container_start_page 69
container_title Journal of ambient intelligence and humanized computing
container_volume 8
creator Maniscalco, Umberto
Rizzo, Riccardo
description In this paper it is proposed a method to design and train a layer of soft sensors based on neural networks in order to constitute a virtual layer of measure in a wireless sensor network. Each soft sensor of the layer esteems the missing values of some hardware sensors by using the values obtained from some other sensors. In so doing, we perform a spatial forecasting. The correlation analysis for all parameter taken into account is used to define a cluster of real sensors used as sources of measure to esteem missing values. An application concerning the fire prevention field is used as a test case and results evaluation.
doi_str_mv 10.1007/s12652-016-0350-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919364228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919364228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-bbfd74418f9ea81ec9b7da84029551740e1865de8f1163b845b95f99bd377e293</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuA62huHpNkWYqPQsGNrkPSSaSlndRkRph_b8qIrrybexfnnHv4ELoFeg-UqocCrJGMUGgI5ZKS8QLNQDeaSBDy8vfm6hotStnTOtxwAJghusRfu9wP7oAPbgwZp4iPwZUhB-xdCS1OHS4p9riErqRcbtBVdIcSFj97jt6fHt9WL2Tz-rxeLTdky6XsifexVUKAjiY4DWFrvGqdFpQZKUEJGmop2QYdARrutZDeyGiMb7lSgRk-R3dT7imnzyGU3u7TkLv60jIDhjeCMV1VMKm2OZWSQ7SnvDu6PFqg9szGTmxsZWPPbOxYPWzylKrtPkL-S_7f9A2YLmUq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919364228</pqid></control><display><type>article</type><title>A virtual layer of measure based on soft sensors</title><source>Springer Link</source><creator>Maniscalco, Umberto ; Rizzo, Riccardo</creator><creatorcontrib>Maniscalco, Umberto ; Rizzo, Riccardo</creatorcontrib><description>In this paper it is proposed a method to design and train a layer of soft sensors based on neural networks in order to constitute a virtual layer of measure in a wireless sensor network. Each soft sensor of the layer esteems the missing values of some hardware sensors by using the values obtained from some other sensors. In so doing, we perform a spatial forecasting. The correlation analysis for all parameter taken into account is used to define a cluster of real sensors used as sources of measure to esteem missing values. An application concerning the fire prevention field is used as a test case and results evaluation.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-016-0350-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Correlation analysis ; Engineering ; Fire prevention ; Neighborhoods ; Neural networks ; Neurons ; Original Research ; Robotics and Automation ; Saturn ; Sensors ; Software ; User Interfaces and Human Computer Interaction ; Wireless sensor networks</subject><ispartof>Journal of ambient intelligence and humanized computing, 2017-02, Vol.8 (1), p.69-78</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-bbfd74418f9ea81ec9b7da84029551740e1865de8f1163b845b95f99bd377e293</citedby><cites>FETCH-LOGICAL-c355t-bbfd74418f9ea81ec9b7da84029551740e1865de8f1163b845b95f99bd377e293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Maniscalco, Umberto</creatorcontrib><creatorcontrib>Rizzo, Riccardo</creatorcontrib><title>A virtual layer of measure based on soft sensors</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>In this paper it is proposed a method to design and train a layer of soft sensors based on neural networks in order to constitute a virtual layer of measure in a wireless sensor network. Each soft sensor of the layer esteems the missing values of some hardware sensors by using the values obtained from some other sensors. In so doing, we perform a spatial forecasting. The correlation analysis for all parameter taken into account is used to define a cluster of real sensors used as sources of measure to esteem missing values. An application concerning the fire prevention field is used as a test case and results evaluation.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Correlation analysis</subject><subject>Engineering</subject><subject>Fire prevention</subject><subject>Neighborhoods</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Original Research</subject><subject>Robotics and Automation</subject><subject>Saturn</subject><subject>Sensors</subject><subject>Software</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Wireless sensor networks</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGp_gLuA62huHpNkWYqPQsGNrkPSSaSlndRkRph_b8qIrrybexfnnHv4ELoFeg-UqocCrJGMUGgI5ZKS8QLNQDeaSBDy8vfm6hotStnTOtxwAJghusRfu9wP7oAPbgwZp4iPwZUhB-xdCS1OHS4p9riErqRcbtBVdIcSFj97jt6fHt9WL2Tz-rxeLTdky6XsifexVUKAjiY4DWFrvGqdFpQZKUEJGmop2QYdARrutZDeyGiMb7lSgRk-R3dT7imnzyGU3u7TkLv60jIDhjeCMV1VMKm2OZWSQ7SnvDu6PFqg9szGTmxsZWPPbOxYPWzylKrtPkL-S_7f9A2YLmUq</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Maniscalco, Umberto</creator><creator>Rizzo, Riccardo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170201</creationdate><title>A virtual layer of measure based on soft sensors</title><author>Maniscalco, Umberto ; Rizzo, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-bbfd74418f9ea81ec9b7da84029551740e1865de8f1163b845b95f99bd377e293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Correlation analysis</topic><topic>Engineering</topic><topic>Fire prevention</topic><topic>Neighborhoods</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Original Research</topic><topic>Robotics and Automation</topic><topic>Saturn</topic><topic>Sensors</topic><topic>Software</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maniscalco, Umberto</creatorcontrib><creatorcontrib>Rizzo, Riccardo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maniscalco, Umberto</au><au>Rizzo, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A virtual layer of measure based on soft sensors</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>69</spage><epage>78</epage><pages>69-78</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>In this paper it is proposed a method to design and train a layer of soft sensors based on neural networks in order to constitute a virtual layer of measure in a wireless sensor network. Each soft sensor of the layer esteems the missing values of some hardware sensors by using the values obtained from some other sensors. In so doing, we perform a spatial forecasting. The correlation analysis for all parameter taken into account is used to define a cluster of real sensors used as sources of measure to esteem missing values. An application concerning the fire prevention field is used as a test case and results evaluation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-016-0350-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2017-02, Vol.8 (1), p.69-78
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_2919364228
source Springer Link
subjects Artificial Intelligence
Computational Intelligence
Correlation analysis
Engineering
Fire prevention
Neighborhoods
Neural networks
Neurons
Original Research
Robotics and Automation
Saturn
Sensors
Software
User Interfaces and Human Computer Interaction
Wireless sensor networks
title A virtual layer of measure based on soft sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20virtual%20layer%20of%20measure%20based%20on%20soft%20sensors&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Maniscalco,%20Umberto&rft.date=2017-02-01&rft.volume=8&rft.issue=1&rft.spage=69&rft.epage=78&rft.pages=69-78&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-016-0350-y&rft_dat=%3Cproquest_cross%3E2919364228%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-bbfd74418f9ea81ec9b7da84029551740e1865de8f1163b845b95f99bd377e293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919364228&rft_id=info:pmid/&rfr_iscdi=true