Loading…

Fall detection approach based on combined two-channel body activity classification for innovative indoor environment

Human fall detection plays a vital role in monitoring senior citizens safely while being alone. In recent works, vision-based techniques provide favorable and effective results. In this paper, a combined two-channel fall detection approach is proposed using Support Vector Machine (SVM) and K-Nearest...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ambient intelligence and humanized computing 2023-09, Vol.14 (9), p.11407-11418
Main Authors: De, Anurag, Saha, Ashim, Kumar, Praveen, Pal, Gautam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-6c6a72fd8c62d372e0afb0134ce4d7e57cdee4f131e849c6f8b1bb5d135967663
cites cdi_FETCH-LOGICAL-c319t-6c6a72fd8c62d372e0afb0134ce4d7e57cdee4f131e849c6f8b1bb5d135967663
container_end_page 11418
container_issue 9
container_start_page 11407
container_title Journal of ambient intelligence and humanized computing
container_volume 14
creator De, Anurag
Saha, Ashim
Kumar, Praveen
Pal, Gautam
description Human fall detection plays a vital role in monitoring senior citizens safely while being alone. In recent works, vision-based techniques provide favorable and effective results. In this paper, a combined two-channel fall detection approach is proposed using Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN) classification models based on the displacement of significant spatial features of the foreground image. Initially, training of both fall and daily activity scenarios is done using a standard fall detection dataset. Keyframes consisting of significant body shape features are then obtained from the surveillance video subjected to the two-channel classification model. We consider the classification results if both the channels generate similar outputs, failing which, additional intelligence is used to classify the fall and daily activity event. The keyframe selection is based on the displacement in height-to-width ratio and displacement in horizontal and vertical centroid movement of the object having a threshold higher than a preset value. The proposed fall detection system achieves a peak accuracy of 98.6% and sensitivity of 100% in detecting falls. The proposed model achieves satisfactory performance in comparison to existing state-of-the-art techniques.
doi_str_mv 10.1007/s12652-022-03714-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919481195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919481195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6c6a72fd8c62d372e0afb0134ce4d7e57cdee4f131e849c6f8b1bb5d135967663</originalsourceid><addsrcrecordid>eNp9UNFKwzAULaLgmPsBnwI-V3uTNmkfZTgVBr7oc0iTG9fRJTPpKvt74yr6ZiDk5HDOudyTZddQ3EJRiLsIlFc0L2i6TECZ07NsBjWv8wrK6vwXM3GZLWLcFumwhgHALBtWqu-JwQH10HlH1H4fvNIb0qqIhiRG-13buYSHT5_rjXIOe9J6cyQqWcZuOBLdqxg722l1yrA-kM45P6bviAkanxh0Yxe826EbrrILq_qIi593nr2tHl6XT_n65fF5eb_ONYNmyLnmSlBras2pYYJioWxbACs1lkZgJbRBLC0wwLpsNLd1C21bGWBVwwXnbJ7dTLlpp48DxkFu_SG4NFLSBpqyBmiqpKKTSgcfY0Ar96HbqXCUUMjvguVUsEwFy1PBkiYTm0wxid07hr_of1xfhACAZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919481195</pqid></control><display><type>article</type><title>Fall detection approach based on combined two-channel body activity classification for innovative indoor environment</title><source>Springer Nature</source><creator>De, Anurag ; Saha, Ashim ; Kumar, Praveen ; Pal, Gautam</creator><creatorcontrib>De, Anurag ; Saha, Ashim ; Kumar, Praveen ; Pal, Gautam</creatorcontrib><description>Human fall detection plays a vital role in monitoring senior citizens safely while being alone. In recent works, vision-based techniques provide favorable and effective results. In this paper, a combined two-channel fall detection approach is proposed using Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN) classification models based on the displacement of significant spatial features of the foreground image. Initially, training of both fall and daily activity scenarios is done using a standard fall detection dataset. Keyframes consisting of significant body shape features are then obtained from the surveillance video subjected to the two-channel classification model. We consider the classification results if both the channels generate similar outputs, failing which, additional intelligence is used to classify the fall and daily activity event. The keyframe selection is based on the displacement in height-to-width ratio and displacement in horizontal and vertical centroid movement of the object having a threshold higher than a preset value. The proposed fall detection system achieves a peak accuracy of 98.6% and sensitivity of 100% in detecting falls. The proposed model achieves satisfactory performance in comparison to existing state-of-the-art techniques.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-022-03714-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accelerometers ; Activities of daily living ; Algorithms ; Artificial Intelligence ; Centroids ; Classification ; Computational Intelligence ; Displacement ; Engineering ; Fall detection ; Indoor environments ; Methods ; Older people ; Original Research ; Robotics and Automation ; Support vector machines ; Surveillance ; User Interfaces and Human Computer Interaction ; Wearable computers</subject><ispartof>Journal of ambient intelligence and humanized computing, 2023-09, Vol.14 (9), p.11407-11418</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6c6a72fd8c62d372e0afb0134ce4d7e57cdee4f131e849c6f8b1bb5d135967663</citedby><cites>FETCH-LOGICAL-c319t-6c6a72fd8c62d372e0afb0134ce4d7e57cdee4f131e849c6f8b1bb5d135967663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>De, Anurag</creatorcontrib><creatorcontrib>Saha, Ashim</creatorcontrib><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Pal, Gautam</creatorcontrib><title>Fall detection approach based on combined two-channel body activity classification for innovative indoor environment</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>Human fall detection plays a vital role in monitoring senior citizens safely while being alone. In recent works, vision-based techniques provide favorable and effective results. In this paper, a combined two-channel fall detection approach is proposed using Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN) classification models based on the displacement of significant spatial features of the foreground image. Initially, training of both fall and daily activity scenarios is done using a standard fall detection dataset. Keyframes consisting of significant body shape features are then obtained from the surveillance video subjected to the two-channel classification model. We consider the classification results if both the channels generate similar outputs, failing which, additional intelligence is used to classify the fall and daily activity event. The keyframe selection is based on the displacement in height-to-width ratio and displacement in horizontal and vertical centroid movement of the object having a threshold higher than a preset value. The proposed fall detection system achieves a peak accuracy of 98.6% and sensitivity of 100% in detecting falls. The proposed model achieves satisfactory performance in comparison to existing state-of-the-art techniques.</description><subject>Accelerometers</subject><subject>Activities of daily living</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Centroids</subject><subject>Classification</subject><subject>Computational Intelligence</subject><subject>Displacement</subject><subject>Engineering</subject><subject>Fall detection</subject><subject>Indoor environments</subject><subject>Methods</subject><subject>Older people</subject><subject>Original Research</subject><subject>Robotics and Automation</subject><subject>Support vector machines</subject><subject>Surveillance</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Wearable computers</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UNFKwzAULaLgmPsBnwI-V3uTNmkfZTgVBr7oc0iTG9fRJTPpKvt74yr6ZiDk5HDOudyTZddQ3EJRiLsIlFc0L2i6TECZ07NsBjWv8wrK6vwXM3GZLWLcFumwhgHALBtWqu-JwQH10HlH1H4fvNIb0qqIhiRG-13buYSHT5_rjXIOe9J6cyQqWcZuOBLdqxg722l1yrA-kM45P6bviAkanxh0Yxe826EbrrILq_qIi593nr2tHl6XT_n65fF5eb_ONYNmyLnmSlBras2pYYJioWxbACs1lkZgJbRBLC0wwLpsNLd1C21bGWBVwwXnbJ7dTLlpp48DxkFu_SG4NFLSBpqyBmiqpKKTSgcfY0Ar96HbqXCUUMjvguVUsEwFy1PBkiYTm0wxid07hr_of1xfhACAZw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>De, Anurag</creator><creator>Saha, Ashim</creator><creator>Kumar, Praveen</creator><creator>Pal, Gautam</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230901</creationdate><title>Fall detection approach based on combined two-channel body activity classification for innovative indoor environment</title><author>De, Anurag ; Saha, Ashim ; Kumar, Praveen ; Pal, Gautam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6c6a72fd8c62d372e0afb0134ce4d7e57cdee4f131e849c6f8b1bb5d135967663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>Activities of daily living</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Centroids</topic><topic>Classification</topic><topic>Computational Intelligence</topic><topic>Displacement</topic><topic>Engineering</topic><topic>Fall detection</topic><topic>Indoor environments</topic><topic>Methods</topic><topic>Older people</topic><topic>Original Research</topic><topic>Robotics and Automation</topic><topic>Support vector machines</topic><topic>Surveillance</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Wearable computers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, Anurag</creatorcontrib><creatorcontrib>Saha, Ashim</creatorcontrib><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Pal, Gautam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, Anurag</au><au>Saha, Ashim</au><au>Kumar, Praveen</au><au>Pal, Gautam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fall detection approach based on combined two-channel body activity classification for innovative indoor environment</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>14</volume><issue>9</issue><spage>11407</spage><epage>11418</epage><pages>11407-11418</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Human fall detection plays a vital role in monitoring senior citizens safely while being alone. In recent works, vision-based techniques provide favorable and effective results. In this paper, a combined two-channel fall detection approach is proposed using Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN) classification models based on the displacement of significant spatial features of the foreground image. Initially, training of both fall and daily activity scenarios is done using a standard fall detection dataset. Keyframes consisting of significant body shape features are then obtained from the surveillance video subjected to the two-channel classification model. We consider the classification results if both the channels generate similar outputs, failing which, additional intelligence is used to classify the fall and daily activity event. The keyframe selection is based on the displacement in height-to-width ratio and displacement in horizontal and vertical centroid movement of the object having a threshold higher than a preset value. The proposed fall detection system achieves a peak accuracy of 98.6% and sensitivity of 100% in detecting falls. The proposed model achieves satisfactory performance in comparison to existing state-of-the-art techniques.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-022-03714-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2023-09, Vol.14 (9), p.11407-11418
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_2919481195
source Springer Nature
subjects Accelerometers
Activities of daily living
Algorithms
Artificial Intelligence
Centroids
Classification
Computational Intelligence
Displacement
Engineering
Fall detection
Indoor environments
Methods
Older people
Original Research
Robotics and Automation
Support vector machines
Surveillance
User Interfaces and Human Computer Interaction
Wearable computers
title Fall detection approach based on combined two-channel body activity classification for innovative indoor environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fall%20detection%20approach%20based%20on%20combined%20two-channel%20body%20activity%20classification%20for%20innovative%20indoor%20environment&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=De,%20Anurag&rft.date=2023-09-01&rft.volume=14&rft.issue=9&rft.spage=11407&rft.epage=11418&rft.pages=11407-11418&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-022-03714-2&rft_dat=%3Cproquest_cross%3E2919481195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-6c6a72fd8c62d372e0afb0134ce4d7e57cdee4f131e849c6f8b1bb5d135967663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919481195&rft_id=info:pmid/&rfr_iscdi=true