Loading…
Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma
Wilms’ tumor, or nephroblastoma, is a cancer of the kidneys that typically occurs in children and rarely in adults. Around 10 % of Wilms’ tumor patients are diagnosed having a concurrent syndrome that enhances the risk of Wilms’ tumor. A screening method for early detection of Wilms’ tumor in these...
Saved in:
Published in: | Network modeling and analysis in health informatics and bioinformatics (Wien) 2015-12, Vol.4 (1), p.30, Article 30 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-dbb99d6f31794d1aab2c679b928f7b3e691d18b46a6d58e9dc1f8c694a4c0123 |
container_end_page | |
container_issue | 1 |
container_start_page | 30 |
container_title | Network modeling and analysis in health informatics and bioinformatics (Wien) |
container_volume | 4 |
creator | Koumakis, L. Sigdel, K. Potamias, G. Sfakianakis, S. van Leeuwen, J. Zacharioudakis, G. Moustakis, V. Zervakis, M. Bucur, A. Marias, K. Graf, N. Tsiknakis, M. |
description | Wilms’ tumor, or nephroblastoma, is a cancer of the kidneys that typically occurs in children and rarely in adults. Around 10 % of Wilms’ tumor patients are diagnosed having a concurrent syndrome that enhances the risk of Wilms’ tumor. A screening method for early detection of Wilms’ tumor in these patients would be beneficial, since the size or stage of a tumor is related to outcome. In this paper, we introduce a miRNA pathway analysis methodology that takes into account the topology and regulation mechanisms of the gene regulatory networks and identify disrupted sub-paths in known pathways, using miRNA expressions. The methodology was applied on a miRNA expression study and a predictive model was developed, using machine-learning (decision-tree induction) approaches. The final predictive model has been integrated with the clinical decision support platform of the p-medicine EU project to provide indicative information about a patient’s phenotype in a clinical setting. Using this integrated software, a clinician is able to identify putative mechanisms that underlie and govern the Wilms’ tumor phenotype, and discriminate between diseased and healthy subjects. Initial experimental results are promising and in line with the relevant biomedical literature. |
doi_str_mv | 10.1007/s13721-015-0102-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919484556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919484556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-dbb99d6f31794d1aab2c679b928f7b3e691d18b46a6d58e9dc1f8c694a4c0123</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKz7AbwFPFczaZs23tbFf7AoyN5DmqS7WbptzbRIv71ZVvTkMMPM4b0H8yPkGtgtMFbcIaQFh4RBHofxJD8jMw6SJ0IU7Pz3FvySLBD3LFYZG_IZ0Q_B261vt_TgP96WSHVraa-H3Zee4q2bCT1S31LT-NYb3VDrjEfftRTHvu_CcE81NRodxWG001Haun4XuqrROHQHfUUuat2gW_zsOdk8PW5WL8n6_fl1tVwnhotySGxVSWlFnUIhMwtaV9yIQlaSl3VRpU5IsFBWmdDC5qWT1kBdGiEznRkGPJ2Tm1NsH7rP0eGg9t0Y4gOouASZlVmei6iCk8qEDjG4WvXBH3SYFDB1ZKlOLFVkqY4sVR49_OTBqG23Lvwl_2_6BosJdyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919484556</pqid></control><display><type>article</type><title>Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma</title><source>Springer Link</source><creator>Koumakis, L. ; Sigdel, K. ; Potamias, G. ; Sfakianakis, S. ; van Leeuwen, J. ; Zacharioudakis, G. ; Moustakis, V. ; Zervakis, M. ; Bucur, A. ; Marias, K. ; Graf, N. ; Tsiknakis, M.</creator><creatorcontrib>Koumakis, L. ; Sigdel, K. ; Potamias, G. ; Sfakianakis, S. ; van Leeuwen, J. ; Zacharioudakis, G. ; Moustakis, V. ; Zervakis, M. ; Bucur, A. ; Marias, K. ; Graf, N. ; Tsiknakis, M.</creatorcontrib><description>Wilms’ tumor, or nephroblastoma, is a cancer of the kidneys that typically occurs in children and rarely in adults. Around 10 % of Wilms’ tumor patients are diagnosed having a concurrent syndrome that enhances the risk of Wilms’ tumor. A screening method for early detection of Wilms’ tumor in these patients would be beneficial, since the size or stage of a tumor is related to outcome. In this paper, we introduce a miRNA pathway analysis methodology that takes into account the topology and regulation mechanisms of the gene regulatory networks and identify disrupted sub-paths in known pathways, using miRNA expressions. The methodology was applied on a miRNA expression study and a predictive model was developed, using machine-learning (decision-tree induction) approaches. The final predictive model has been integrated with the clinical decision support platform of the p-medicine EU project to provide indicative information about a patient’s phenotype in a clinical setting. Using this integrated software, a clinician is able to identify putative mechanisms that underlie and govern the Wilms’ tumor phenotype, and discriminate between diseased and healthy subjects. Initial experimental results are promising and in line with the relevant biomedical literature.</description><identifier>ISSN: 2192-6662</identifier><identifier>EISSN: 2192-6670</identifier><identifier>DOI: 10.1007/s13721-015-0102-5</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Applications of Graph Theory and Complex Networks ; Bioinformatics ; Cancer ; Clinical decision making ; Clinical medicine ; Computational Biology/Bioinformatics ; Computer Science ; Data mining ; Decision analysis ; Decision support systems ; Decision trees ; Genes ; Genomics ; Health Informatics ; Knowledge discovery ; Machine learning ; MicroRNAs ; miRNA ; Original Article ; Patient satisfaction ; Phenotypes ; Precision medicine ; Prediction models ; Software ; Topology ; Tumors</subject><ispartof>Network modeling and analysis in health informatics and bioinformatics (Wien), 2015-12, Vol.4 (1), p.30, Article 30</ispartof><rights>Springer-Verlag Wien 2015</rights><rights>Springer-Verlag Wien 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-dbb99d6f31794d1aab2c679b928f7b3e691d18b46a6d58e9dc1f8c694a4c0123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Koumakis, L.</creatorcontrib><creatorcontrib>Sigdel, K.</creatorcontrib><creatorcontrib>Potamias, G.</creatorcontrib><creatorcontrib>Sfakianakis, S.</creatorcontrib><creatorcontrib>van Leeuwen, J.</creatorcontrib><creatorcontrib>Zacharioudakis, G.</creatorcontrib><creatorcontrib>Moustakis, V.</creatorcontrib><creatorcontrib>Zervakis, M.</creatorcontrib><creatorcontrib>Bucur, A.</creatorcontrib><creatorcontrib>Marias, K.</creatorcontrib><creatorcontrib>Graf, N.</creatorcontrib><creatorcontrib>Tsiknakis, M.</creatorcontrib><title>Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma</title><title>Network modeling and analysis in health informatics and bioinformatics (Wien)</title><addtitle>Netw Model Anal Health Inform Bioinforma</addtitle><description>Wilms’ tumor, or nephroblastoma, is a cancer of the kidneys that typically occurs in children and rarely in adults. Around 10 % of Wilms’ tumor patients are diagnosed having a concurrent syndrome that enhances the risk of Wilms’ tumor. A screening method for early detection of Wilms’ tumor in these patients would be beneficial, since the size or stage of a tumor is related to outcome. In this paper, we introduce a miRNA pathway analysis methodology that takes into account the topology and regulation mechanisms of the gene regulatory networks and identify disrupted sub-paths in known pathways, using miRNA expressions. The methodology was applied on a miRNA expression study and a predictive model was developed, using machine-learning (decision-tree induction) approaches. The final predictive model has been integrated with the clinical decision support platform of the p-medicine EU project to provide indicative information about a patient’s phenotype in a clinical setting. Using this integrated software, a clinician is able to identify putative mechanisms that underlie and govern the Wilms’ tumor phenotype, and discriminate between diseased and healthy subjects. Initial experimental results are promising and in line with the relevant biomedical literature.</description><subject>Applications of Graph Theory and Complex Networks</subject><subject>Bioinformatics</subject><subject>Cancer</subject><subject>Clinical decision making</subject><subject>Clinical medicine</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Decision analysis</subject><subject>Decision support systems</subject><subject>Decision trees</subject><subject>Genes</subject><subject>Genomics</subject><subject>Health Informatics</subject><subject>Knowledge discovery</subject><subject>Machine learning</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Original Article</subject><subject>Patient satisfaction</subject><subject>Phenotypes</subject><subject>Precision medicine</subject><subject>Prediction models</subject><subject>Software</subject><subject>Topology</subject><subject>Tumors</subject><issn>2192-6662</issn><issn>2192-6670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouKz7AbwFPFczaZs23tbFf7AoyN5DmqS7WbptzbRIv71ZVvTkMMPM4b0H8yPkGtgtMFbcIaQFh4RBHofxJD8jMw6SJ0IU7Pz3FvySLBD3LFYZG_IZ0Q_B261vt_TgP96WSHVraa-H3Zee4q2bCT1S31LT-NYb3VDrjEfftRTHvu_CcE81NRodxWG001Haun4XuqrROHQHfUUuat2gW_zsOdk8PW5WL8n6_fl1tVwnhotySGxVSWlFnUIhMwtaV9yIQlaSl3VRpU5IsFBWmdDC5qWT1kBdGiEznRkGPJ2Tm1NsH7rP0eGg9t0Y4gOouASZlVmei6iCk8qEDjG4WvXBH3SYFDB1ZKlOLFVkqY4sVR49_OTBqG23Lvwl_2_6BosJdyA</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Koumakis, L.</creator><creator>Sigdel, K.</creator><creator>Potamias, G.</creator><creator>Sfakianakis, S.</creator><creator>van Leeuwen, J.</creator><creator>Zacharioudakis, G.</creator><creator>Moustakis, V.</creator><creator>Zervakis, M.</creator><creator>Bucur, A.</creator><creator>Marias, K.</creator><creator>Graf, N.</creator><creator>Tsiknakis, M.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20151201</creationdate><title>Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma</title><author>Koumakis, L. ; Sigdel, K. ; Potamias, G. ; Sfakianakis, S. ; van Leeuwen, J. ; Zacharioudakis, G. ; Moustakis, V. ; Zervakis, M. ; Bucur, A. ; Marias, K. ; Graf, N. ; Tsiknakis, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-dbb99d6f31794d1aab2c679b928f7b3e691d18b46a6d58e9dc1f8c694a4c0123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applications of Graph Theory and Complex Networks</topic><topic>Bioinformatics</topic><topic>Cancer</topic><topic>Clinical decision making</topic><topic>Clinical medicine</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Decision analysis</topic><topic>Decision support systems</topic><topic>Decision trees</topic><topic>Genes</topic><topic>Genomics</topic><topic>Health Informatics</topic><topic>Knowledge discovery</topic><topic>Machine learning</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Original Article</topic><topic>Patient satisfaction</topic><topic>Phenotypes</topic><topic>Precision medicine</topic><topic>Prediction models</topic><topic>Software</topic><topic>Topology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koumakis, L.</creatorcontrib><creatorcontrib>Sigdel, K.</creatorcontrib><creatorcontrib>Potamias, G.</creatorcontrib><creatorcontrib>Sfakianakis, S.</creatorcontrib><creatorcontrib>van Leeuwen, J.</creatorcontrib><creatorcontrib>Zacharioudakis, G.</creatorcontrib><creatorcontrib>Moustakis, V.</creatorcontrib><creatorcontrib>Zervakis, M.</creatorcontrib><creatorcontrib>Bucur, A.</creatorcontrib><creatorcontrib>Marias, K.</creatorcontrib><creatorcontrib>Graf, N.</creatorcontrib><creatorcontrib>Tsiknakis, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Network modeling and analysis in health informatics and bioinformatics (Wien)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koumakis, L.</au><au>Sigdel, K.</au><au>Potamias, G.</au><au>Sfakianakis, S.</au><au>van Leeuwen, J.</au><au>Zacharioudakis, G.</au><au>Moustakis, V.</au><au>Zervakis, M.</au><au>Bucur, A.</au><au>Marias, K.</au><au>Graf, N.</au><au>Tsiknakis, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma</atitle><jtitle>Network modeling and analysis in health informatics and bioinformatics (Wien)</jtitle><stitle>Netw Model Anal Health Inform Bioinforma</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>4</volume><issue>1</issue><spage>30</spage><pages>30-</pages><artnum>30</artnum><issn>2192-6662</issn><eissn>2192-6670</eissn><abstract>Wilms’ tumor, or nephroblastoma, is a cancer of the kidneys that typically occurs in children and rarely in adults. Around 10 % of Wilms’ tumor patients are diagnosed having a concurrent syndrome that enhances the risk of Wilms’ tumor. A screening method for early detection of Wilms’ tumor in these patients would be beneficial, since the size or stage of a tumor is related to outcome. In this paper, we introduce a miRNA pathway analysis methodology that takes into account the topology and regulation mechanisms of the gene regulatory networks and identify disrupted sub-paths in known pathways, using miRNA expressions. The methodology was applied on a miRNA expression study and a predictive model was developed, using machine-learning (decision-tree induction) approaches. The final predictive model has been integrated with the clinical decision support platform of the p-medicine EU project to provide indicative information about a patient’s phenotype in a clinical setting. Using this integrated software, a clinician is able to identify putative mechanisms that underlie and govern the Wilms’ tumor phenotype, and discriminate between diseased and healthy subjects. Initial experimental results are promising and in line with the relevant biomedical literature.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13721-015-0102-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-6662 |
ispartof | Network modeling and analysis in health informatics and bioinformatics (Wien), 2015-12, Vol.4 (1), p.30, Article 30 |
issn | 2192-6662 2192-6670 |
language | eng |
recordid | cdi_proquest_journals_2919484556 |
source | Springer Link |
subjects | Applications of Graph Theory and Complex Networks Bioinformatics Cancer Clinical decision making Clinical medicine Computational Biology/Bioinformatics Computer Science Data mining Decision analysis Decision support systems Decision trees Genes Genomics Health Informatics Knowledge discovery Machine learning MicroRNAs miRNA Original Article Patient satisfaction Phenotypes Precision medicine Prediction models Software Topology Tumors |
title | Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20miRNAs%20and%20pathway%20analysis%20in%20clinical%20decision%20support:%20a%20case%20study%20in%20nephroblastoma&rft.jtitle=Network%20modeling%20and%20analysis%20in%20health%20informatics%20and%20bioinformatics%20(Wien)&rft.au=Koumakis,%20L.&rft.date=2015-12-01&rft.volume=4&rft.issue=1&rft.spage=30&rft.pages=30-&rft.artnum=30&rft.issn=2192-6662&rft.eissn=2192-6670&rft_id=info:doi/10.1007/s13721-015-0102-5&rft_dat=%3Cproquest_cross%3E2919484556%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-dbb99d6f31794d1aab2c679b928f7b3e691d18b46a6d58e9dc1f8c694a4c0123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919484556&rft_id=info:pmid/&rfr_iscdi=true |