Loading…

Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma

Wilms’ tumor, or nephroblastoma, is a cancer of the kidneys that typically occurs in children and rarely in adults. Around 10 % of Wilms’ tumor patients are diagnosed having a concurrent syndrome that enhances the risk of Wilms’ tumor. A screening method for early detection of Wilms’ tumor in these...

Full description

Saved in:
Bibliographic Details
Published in:Network modeling and analysis in health informatics and bioinformatics (Wien) 2015-12, Vol.4 (1), p.30, Article 30
Main Authors: Koumakis, L., Sigdel, K., Potamias, G., Sfakianakis, S., van Leeuwen, J., Zacharioudakis, G., Moustakis, V., Zervakis, M., Bucur, A., Marias, K., Graf, N., Tsiknakis, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-dbb99d6f31794d1aab2c679b928f7b3e691d18b46a6d58e9dc1f8c694a4c0123
container_end_page
container_issue 1
container_start_page 30
container_title Network modeling and analysis in health informatics and bioinformatics (Wien)
container_volume 4
creator Koumakis, L.
Sigdel, K.
Potamias, G.
Sfakianakis, S.
van Leeuwen, J.
Zacharioudakis, G.
Moustakis, V.
Zervakis, M.
Bucur, A.
Marias, K.
Graf, N.
Tsiknakis, M.
description Wilms’ tumor, or nephroblastoma, is a cancer of the kidneys that typically occurs in children and rarely in adults. Around 10 % of Wilms’ tumor patients are diagnosed having a concurrent syndrome that enhances the risk of Wilms’ tumor. A screening method for early detection of Wilms’ tumor in these patients would be beneficial, since the size or stage of a tumor is related to outcome. In this paper, we introduce a miRNA pathway analysis methodology that takes into account the topology and regulation mechanisms of the gene regulatory networks and identify disrupted sub-paths in known pathways, using miRNA expressions. The methodology was applied on a miRNA expression study and a predictive model was developed, using machine-learning (decision-tree induction) approaches. The final predictive model has been integrated with the clinical decision support platform of the p-medicine EU project to provide indicative information about a patient’s phenotype in a clinical setting. Using this integrated software, a clinician is able to identify putative mechanisms that underlie and govern the Wilms’ tumor phenotype, and discriminate between diseased and healthy subjects. Initial experimental results are promising and in line with the relevant biomedical literature.
doi_str_mv 10.1007/s13721-015-0102-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919484556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919484556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-dbb99d6f31794d1aab2c679b928f7b3e691d18b46a6d58e9dc1f8c694a4c0123</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKz7AbwFPFczaZs23tbFf7AoyN5DmqS7WbptzbRIv71ZVvTkMMPM4b0H8yPkGtgtMFbcIaQFh4RBHofxJD8jMw6SJ0IU7Pz3FvySLBD3LFYZG_IZ0Q_B261vt_TgP96WSHVraa-H3Zee4q2bCT1S31LT-NYb3VDrjEfftRTHvu_CcE81NRodxWG001Haun4XuqrROHQHfUUuat2gW_zsOdk8PW5WL8n6_fl1tVwnhotySGxVSWlFnUIhMwtaV9yIQlaSl3VRpU5IsFBWmdDC5qWT1kBdGiEznRkGPJ2Tm1NsH7rP0eGg9t0Y4gOouASZlVmei6iCk8qEDjG4WvXBH3SYFDB1ZKlOLFVkqY4sVR49_OTBqG23Lvwl_2_6BosJdyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919484556</pqid></control><display><type>article</type><title>Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma</title><source>Springer Link</source><creator>Koumakis, L. ; Sigdel, K. ; Potamias, G. ; Sfakianakis, S. ; van Leeuwen, J. ; Zacharioudakis, G. ; Moustakis, V. ; Zervakis, M. ; Bucur, A. ; Marias, K. ; Graf, N. ; Tsiknakis, M.</creator><creatorcontrib>Koumakis, L. ; Sigdel, K. ; Potamias, G. ; Sfakianakis, S. ; van Leeuwen, J. ; Zacharioudakis, G. ; Moustakis, V. ; Zervakis, M. ; Bucur, A. ; Marias, K. ; Graf, N. ; Tsiknakis, M.</creatorcontrib><description>Wilms’ tumor, or nephroblastoma, is a cancer of the kidneys that typically occurs in children and rarely in adults. Around 10 % of Wilms’ tumor patients are diagnosed having a concurrent syndrome that enhances the risk of Wilms’ tumor. A screening method for early detection of Wilms’ tumor in these patients would be beneficial, since the size or stage of a tumor is related to outcome. In this paper, we introduce a miRNA pathway analysis methodology that takes into account the topology and regulation mechanisms of the gene regulatory networks and identify disrupted sub-paths in known pathways, using miRNA expressions. The methodology was applied on a miRNA expression study and a predictive model was developed, using machine-learning (decision-tree induction) approaches. The final predictive model has been integrated with the clinical decision support platform of the p-medicine EU project to provide indicative information about a patient’s phenotype in a clinical setting. Using this integrated software, a clinician is able to identify putative mechanisms that underlie and govern the Wilms’ tumor phenotype, and discriminate between diseased and healthy subjects. Initial experimental results are promising and in line with the relevant biomedical literature.</description><identifier>ISSN: 2192-6662</identifier><identifier>EISSN: 2192-6670</identifier><identifier>DOI: 10.1007/s13721-015-0102-5</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Applications of Graph Theory and Complex Networks ; Bioinformatics ; Cancer ; Clinical decision making ; Clinical medicine ; Computational Biology/Bioinformatics ; Computer Science ; Data mining ; Decision analysis ; Decision support systems ; Decision trees ; Genes ; Genomics ; Health Informatics ; Knowledge discovery ; Machine learning ; MicroRNAs ; miRNA ; Original Article ; Patient satisfaction ; Phenotypes ; Precision medicine ; Prediction models ; Software ; Topology ; Tumors</subject><ispartof>Network modeling and analysis in health informatics and bioinformatics (Wien), 2015-12, Vol.4 (1), p.30, Article 30</ispartof><rights>Springer-Verlag Wien 2015</rights><rights>Springer-Verlag Wien 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-dbb99d6f31794d1aab2c679b928f7b3e691d18b46a6d58e9dc1f8c694a4c0123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Koumakis, L.</creatorcontrib><creatorcontrib>Sigdel, K.</creatorcontrib><creatorcontrib>Potamias, G.</creatorcontrib><creatorcontrib>Sfakianakis, S.</creatorcontrib><creatorcontrib>van Leeuwen, J.</creatorcontrib><creatorcontrib>Zacharioudakis, G.</creatorcontrib><creatorcontrib>Moustakis, V.</creatorcontrib><creatorcontrib>Zervakis, M.</creatorcontrib><creatorcontrib>Bucur, A.</creatorcontrib><creatorcontrib>Marias, K.</creatorcontrib><creatorcontrib>Graf, N.</creatorcontrib><creatorcontrib>Tsiknakis, M.</creatorcontrib><title>Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma</title><title>Network modeling and analysis in health informatics and bioinformatics (Wien)</title><addtitle>Netw Model Anal Health Inform Bioinforma</addtitle><description>Wilms’ tumor, or nephroblastoma, is a cancer of the kidneys that typically occurs in children and rarely in adults. Around 10 % of Wilms’ tumor patients are diagnosed having a concurrent syndrome that enhances the risk of Wilms’ tumor. A screening method for early detection of Wilms’ tumor in these patients would be beneficial, since the size or stage of a tumor is related to outcome. In this paper, we introduce a miRNA pathway analysis methodology that takes into account the topology and regulation mechanisms of the gene regulatory networks and identify disrupted sub-paths in known pathways, using miRNA expressions. The methodology was applied on a miRNA expression study and a predictive model was developed, using machine-learning (decision-tree induction) approaches. The final predictive model has been integrated with the clinical decision support platform of the p-medicine EU project to provide indicative information about a patient’s phenotype in a clinical setting. Using this integrated software, a clinician is able to identify putative mechanisms that underlie and govern the Wilms’ tumor phenotype, and discriminate between diseased and healthy subjects. Initial experimental results are promising and in line with the relevant biomedical literature.</description><subject>Applications of Graph Theory and Complex Networks</subject><subject>Bioinformatics</subject><subject>Cancer</subject><subject>Clinical decision making</subject><subject>Clinical medicine</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Decision analysis</subject><subject>Decision support systems</subject><subject>Decision trees</subject><subject>Genes</subject><subject>Genomics</subject><subject>Health Informatics</subject><subject>Knowledge discovery</subject><subject>Machine learning</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Original Article</subject><subject>Patient satisfaction</subject><subject>Phenotypes</subject><subject>Precision medicine</subject><subject>Prediction models</subject><subject>Software</subject><subject>Topology</subject><subject>Tumors</subject><issn>2192-6662</issn><issn>2192-6670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouKz7AbwFPFczaZs23tbFf7AoyN5DmqS7WbptzbRIv71ZVvTkMMPM4b0H8yPkGtgtMFbcIaQFh4RBHofxJD8jMw6SJ0IU7Pz3FvySLBD3LFYZG_IZ0Q_B261vt_TgP96WSHVraa-H3Zee4q2bCT1S31LT-NYb3VDrjEfftRTHvu_CcE81NRodxWG001Haun4XuqrROHQHfUUuat2gW_zsOdk8PW5WL8n6_fl1tVwnhotySGxVSWlFnUIhMwtaV9yIQlaSl3VRpU5IsFBWmdDC5qWT1kBdGiEznRkGPJ2Tm1NsH7rP0eGg9t0Y4gOouASZlVmei6iCk8qEDjG4WvXBH3SYFDB1ZKlOLFVkqY4sVR49_OTBqG23Lvwl_2_6BosJdyA</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Koumakis, L.</creator><creator>Sigdel, K.</creator><creator>Potamias, G.</creator><creator>Sfakianakis, S.</creator><creator>van Leeuwen, J.</creator><creator>Zacharioudakis, G.</creator><creator>Moustakis, V.</creator><creator>Zervakis, M.</creator><creator>Bucur, A.</creator><creator>Marias, K.</creator><creator>Graf, N.</creator><creator>Tsiknakis, M.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20151201</creationdate><title>Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma</title><author>Koumakis, L. ; Sigdel, K. ; Potamias, G. ; Sfakianakis, S. ; van Leeuwen, J. ; Zacharioudakis, G. ; Moustakis, V. ; Zervakis, M. ; Bucur, A. ; Marias, K. ; Graf, N. ; Tsiknakis, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-dbb99d6f31794d1aab2c679b928f7b3e691d18b46a6d58e9dc1f8c694a4c0123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applications of Graph Theory and Complex Networks</topic><topic>Bioinformatics</topic><topic>Cancer</topic><topic>Clinical decision making</topic><topic>Clinical medicine</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Decision analysis</topic><topic>Decision support systems</topic><topic>Decision trees</topic><topic>Genes</topic><topic>Genomics</topic><topic>Health Informatics</topic><topic>Knowledge discovery</topic><topic>Machine learning</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Original Article</topic><topic>Patient satisfaction</topic><topic>Phenotypes</topic><topic>Precision medicine</topic><topic>Prediction models</topic><topic>Software</topic><topic>Topology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koumakis, L.</creatorcontrib><creatorcontrib>Sigdel, K.</creatorcontrib><creatorcontrib>Potamias, G.</creatorcontrib><creatorcontrib>Sfakianakis, S.</creatorcontrib><creatorcontrib>van Leeuwen, J.</creatorcontrib><creatorcontrib>Zacharioudakis, G.</creatorcontrib><creatorcontrib>Moustakis, V.</creatorcontrib><creatorcontrib>Zervakis, M.</creatorcontrib><creatorcontrib>Bucur, A.</creatorcontrib><creatorcontrib>Marias, K.</creatorcontrib><creatorcontrib>Graf, N.</creatorcontrib><creatorcontrib>Tsiknakis, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Network modeling and analysis in health informatics and bioinformatics (Wien)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koumakis, L.</au><au>Sigdel, K.</au><au>Potamias, G.</au><au>Sfakianakis, S.</au><au>van Leeuwen, J.</au><au>Zacharioudakis, G.</au><au>Moustakis, V.</au><au>Zervakis, M.</au><au>Bucur, A.</au><au>Marias, K.</au><au>Graf, N.</au><au>Tsiknakis, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma</atitle><jtitle>Network modeling and analysis in health informatics and bioinformatics (Wien)</jtitle><stitle>Netw Model Anal Health Inform Bioinforma</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>4</volume><issue>1</issue><spage>30</spage><pages>30-</pages><artnum>30</artnum><issn>2192-6662</issn><eissn>2192-6670</eissn><abstract>Wilms’ tumor, or nephroblastoma, is a cancer of the kidneys that typically occurs in children and rarely in adults. Around 10 % of Wilms’ tumor patients are diagnosed having a concurrent syndrome that enhances the risk of Wilms’ tumor. A screening method for early detection of Wilms’ tumor in these patients would be beneficial, since the size or stage of a tumor is related to outcome. In this paper, we introduce a miRNA pathway analysis methodology that takes into account the topology and regulation mechanisms of the gene regulatory networks and identify disrupted sub-paths in known pathways, using miRNA expressions. The methodology was applied on a miRNA expression study and a predictive model was developed, using machine-learning (decision-tree induction) approaches. The final predictive model has been integrated with the clinical decision support platform of the p-medicine EU project to provide indicative information about a patient’s phenotype in a clinical setting. Using this integrated software, a clinician is able to identify putative mechanisms that underlie and govern the Wilms’ tumor phenotype, and discriminate between diseased and healthy subjects. Initial experimental results are promising and in line with the relevant biomedical literature.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13721-015-0102-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 2192-6662
ispartof Network modeling and analysis in health informatics and bioinformatics (Wien), 2015-12, Vol.4 (1), p.30, Article 30
issn 2192-6662
2192-6670
language eng
recordid cdi_proquest_journals_2919484556
source Springer Link
subjects Applications of Graph Theory and Complex Networks
Bioinformatics
Cancer
Clinical decision making
Clinical medicine
Computational Biology/Bioinformatics
Computer Science
Data mining
Decision analysis
Decision support systems
Decision trees
Genes
Genomics
Health Informatics
Knowledge discovery
Machine learning
MicroRNAs
miRNA
Original Article
Patient satisfaction
Phenotypes
Precision medicine
Prediction models
Software
Topology
Tumors
title Bridging miRNAs and pathway analysis in clinical decision support: a case study in nephroblastoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20miRNAs%20and%20pathway%20analysis%20in%20clinical%20decision%20support:%20a%20case%20study%20in%20nephroblastoma&rft.jtitle=Network%20modeling%20and%20analysis%20in%20health%20informatics%20and%20bioinformatics%20(Wien)&rft.au=Koumakis,%20L.&rft.date=2015-12-01&rft.volume=4&rft.issue=1&rft.spage=30&rft.pages=30-&rft.artnum=30&rft.issn=2192-6662&rft.eissn=2192-6670&rft_id=info:doi/10.1007/s13721-015-0102-5&rft_dat=%3Cproquest_cross%3E2919484556%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-dbb99d6f31794d1aab2c679b928f7b3e691d18b46a6d58e9dc1f8c694a4c0123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919484556&rft_id=info:pmid/&rfr_iscdi=true