Loading…
Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic
Removal of dyes from wastewater is a challenging task for scientists and environmentalists. This work has studied a mathematical model characterizing the typical staining process within sewage systems. Two widely used nanoparticles, ZnO , and T i O 2 , are used to remove dyes from wastewater. The BE...
Saved in:
Published in: | European physical journal plus 2022-09, Vol.137 (9), p.1062, Article 1062 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283 |
---|---|
cites | cdi_FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283 |
container_end_page | |
container_issue | 9 |
container_start_page | 1062 |
container_title | European physical journal plus |
container_volume | 137 |
creator | Kamal, Mustafa Sulaiman, Muhammad Alshammari, Fahad Sameer |
description | Removal of dyes from wastewater is a challenging task for scientists and environmentalists. This work has studied a mathematical model characterizing the typical staining process within sewage systems. Two widely used nanoparticles,
ZnO
, and
T
i
O
2
, are used to remove dyes from wastewater. The BET (Brunauer, Emmett, and Teller) method determines the pore diameter d. The mathematical model of the phenomenon is modeled as a highly nonlinear partial differential equation (HNDE), detailed in a semi-infinite domain. In the present study, a hybridization of the Levenberg-Marquardt Backpropagation and Supervised Neural Network (LMB-SNN) is utilized to find the model’s surrogate solutions. The Runge-Kutta of the order four (RK4) technique is used to create reference solutions. We have analyzed our surrogate solution models by considering eight different scenarios. The stability and equilibrium of the mathematical model are checked by varying physical quantities like the ratio of final pressure to initial pressure. Our candidate solutions are divided into training, testing, and experimental categories to establish the reliability of our machine learning procedure. Comparative studies of statistical values based on mean squared error function (MSEF), effectiveness, regression plots, and failure histograms confirm the efficiency of the (LMB-SNN) scheme. |
doi_str_mv | 10.1140/epjp/s13360-022-03226-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919500017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919500017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMoKKu_wYDnapJm281RFr9gQQQ9h2k70SzdpmbalV787WZdQW_mMAmT9xmSh7FzKS6l1OIK-3V_RTLPC5EJpTKRK1Vk4oCdKGlENtdaH_45H7MzorVISxupjT5hn08jdIMfYPBb5A5hGCMShw7aiTzx4DjwTWiw5S5ETthDTNnQ7W4aTxTaLTacxooG6OqEuhg2iXHt6JtUwwevJj6S715T922qYmq_4Rg9Db4-ZUcOWsKzn33GXm5vnpf32erx7mF5vcpqWaa3G62VQoGAjZtD1UCDhambSrjSCWdQG1XNC5ejE1CiVqWRVV4sAKp8AYVa5DN2sZ_bx_A-Ig12HcaYPklWGWnmyYgsU6rcp-oYiCI620e_gThZKezOt935tnvfNvm2375TnbHFnqREdK8Yf-f_h34B5XyJww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919500017</pqid></control><display><type>article</type><title>Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic</title><source>Springer Link</source><creator>Kamal, Mustafa ; Sulaiman, Muhammad ; Alshammari, Fahad Sameer</creator><creatorcontrib>Kamal, Mustafa ; Sulaiman, Muhammad ; Alshammari, Fahad Sameer</creatorcontrib><description>Removal of dyes from wastewater is a challenging task for scientists and environmentalists. This work has studied a mathematical model characterizing the typical staining process within sewage systems. Two widely used nanoparticles,
ZnO
, and
T
i
O
2
, are used to remove dyes from wastewater. The BET (Brunauer, Emmett, and Teller) method determines the pore diameter d. The mathematical model of the phenomenon is modeled as a highly nonlinear partial differential equation (HNDE), detailed in a semi-infinite domain. In the present study, a hybridization of the Levenberg-Marquardt Backpropagation and Supervised Neural Network (LMB-SNN) is utilized to find the model’s surrogate solutions. The Runge-Kutta of the order four (RK4) technique is used to create reference solutions. We have analyzed our surrogate solution models by considering eight different scenarios. The stability and equilibrium of the mathematical model are checked by varying physical quantities like the ratio of final pressure to initial pressure. Our candidate solutions are divided into training, testing, and experimental categories to establish the reliability of our machine learning procedure. Comparative studies of statistical values based on mean squared error function (MSEF), effectiveness, regression plots, and failure histograms confirm the efficiency of the (LMB-SNN) scheme.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03226-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Back propagation networks ; Boundary value problems ; Color removal ; Comparative studies ; Complex Systems ; Condensed Matter Physics ; Design ; Dyes ; Environmentalists ; Error functions ; Fluid flow ; Initial pressure ; Investigations ; Machine learning ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Neural networks ; Nonlinear differential equations ; Numerical analysis ; Optical and Plasma Physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Regular Article ; Runge-Kutta method ; Sewage ; Sewer systems ; Statistical analysis ; Theoretical ; Titanium dioxide ; Wastewater treatment ; Zinc oxide</subject><ispartof>European physical journal plus, 2022-09, Vol.137 (9), p.1062, Article 1062</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283</citedby><cites>FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283</cites><orcidid>0000-0003-4375-1958 ; 0000-0002-4040-6211 ; 0000-0002-5402-8960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kamal, Mustafa</creatorcontrib><creatorcontrib>Sulaiman, Muhammad</creatorcontrib><creatorcontrib>Alshammari, Fahad Sameer</creatorcontrib><title>Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>Removal of dyes from wastewater is a challenging task for scientists and environmentalists. This work has studied a mathematical model characterizing the typical staining process within sewage systems. Two widely used nanoparticles,
ZnO
, and
T
i
O
2
, are used to remove dyes from wastewater. The BET (Brunauer, Emmett, and Teller) method determines the pore diameter d. The mathematical model of the phenomenon is modeled as a highly nonlinear partial differential equation (HNDE), detailed in a semi-infinite domain. In the present study, a hybridization of the Levenberg-Marquardt Backpropagation and Supervised Neural Network (LMB-SNN) is utilized to find the model’s surrogate solutions. The Runge-Kutta of the order four (RK4) technique is used to create reference solutions. We have analyzed our surrogate solution models by considering eight different scenarios. The stability and equilibrium of the mathematical model are checked by varying physical quantities like the ratio of final pressure to initial pressure. Our candidate solutions are divided into training, testing, and experimental categories to establish the reliability of our machine learning procedure. Comparative studies of statistical values based on mean squared error function (MSEF), effectiveness, regression plots, and failure histograms confirm the efficiency of the (LMB-SNN) scheme.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Back propagation networks</subject><subject>Boundary value problems</subject><subject>Color removal</subject><subject>Comparative studies</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Design</subject><subject>Dyes</subject><subject>Environmentalists</subject><subject>Error functions</subject><subject>Fluid flow</subject><subject>Initial pressure</subject><subject>Investigations</subject><subject>Machine learning</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Neural networks</subject><subject>Nonlinear differential equations</subject><subject>Numerical analysis</subject><subject>Optical and Plasma Physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Runge-Kutta method</subject><subject>Sewage</subject><subject>Sewer systems</subject><subject>Statistical analysis</subject><subject>Theoretical</subject><subject>Titanium dioxide</subject><subject>Wastewater treatment</subject><subject>Zinc oxide</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMoKKu_wYDnapJm281RFr9gQQQ9h2k70SzdpmbalV787WZdQW_mMAmT9xmSh7FzKS6l1OIK-3V_RTLPC5EJpTKRK1Vk4oCdKGlENtdaH_45H7MzorVISxupjT5hn08jdIMfYPBb5A5hGCMShw7aiTzx4DjwTWiw5S5ETthDTNnQ7W4aTxTaLTacxooG6OqEuhg2iXHt6JtUwwevJj6S715T922qYmq_4Rg9Db4-ZUcOWsKzn33GXm5vnpf32erx7mF5vcpqWaa3G62VQoGAjZtD1UCDhambSrjSCWdQG1XNC5ejE1CiVqWRVV4sAKp8AYVa5DN2sZ_bx_A-Ig12HcaYPklWGWnmyYgsU6rcp-oYiCI620e_gThZKezOt935tnvfNvm2375TnbHFnqREdK8Yf-f_h34B5XyJww</recordid><startdate>20220917</startdate><enddate>20220917</enddate><creator>Kamal, Mustafa</creator><creator>Sulaiman, Muhammad</creator><creator>Alshammari, Fahad Sameer</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4375-1958</orcidid><orcidid>https://orcid.org/0000-0002-4040-6211</orcidid><orcidid>https://orcid.org/0000-0002-5402-8960</orcidid></search><sort><creationdate>20220917</creationdate><title>Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic</title><author>Kamal, Mustafa ; Sulaiman, Muhammad ; Alshammari, Fahad Sameer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Back propagation networks</topic><topic>Boundary value problems</topic><topic>Color removal</topic><topic>Comparative studies</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Design</topic><topic>Dyes</topic><topic>Environmentalists</topic><topic>Error functions</topic><topic>Fluid flow</topic><topic>Initial pressure</topic><topic>Investigations</topic><topic>Machine learning</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Neural networks</topic><topic>Nonlinear differential equations</topic><topic>Numerical analysis</topic><topic>Optical and Plasma Physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Runge-Kutta method</topic><topic>Sewage</topic><topic>Sewer systems</topic><topic>Statistical analysis</topic><topic>Theoretical</topic><topic>Titanium dioxide</topic><topic>Wastewater treatment</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamal, Mustafa</creatorcontrib><creatorcontrib>Sulaiman, Muhammad</creatorcontrib><creatorcontrib>Alshammari, Fahad Sameer</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamal, Mustafa</au><au>Sulaiman, Muhammad</au><au>Alshammari, Fahad Sameer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-09-17</date><risdate>2022</risdate><volume>137</volume><issue>9</issue><spage>1062</spage><pages>1062-</pages><artnum>1062</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>Removal of dyes from wastewater is a challenging task for scientists and environmentalists. This work has studied a mathematical model characterizing the typical staining process within sewage systems. Two widely used nanoparticles,
ZnO
, and
T
i
O
2
, are used to remove dyes from wastewater. The BET (Brunauer, Emmett, and Teller) method determines the pore diameter d. The mathematical model of the phenomenon is modeled as a highly nonlinear partial differential equation (HNDE), detailed in a semi-infinite domain. In the present study, a hybridization of the Levenberg-Marquardt Backpropagation and Supervised Neural Network (LMB-SNN) is utilized to find the model’s surrogate solutions. The Runge-Kutta of the order four (RK4) technique is used to create reference solutions. We have analyzed our surrogate solution models by considering eight different scenarios. The stability and equilibrium of the mathematical model are checked by varying physical quantities like the ratio of final pressure to initial pressure. Our candidate solutions are divided into training, testing, and experimental categories to establish the reliability of our machine learning procedure. Comparative studies of statistical values based on mean squared error function (MSEF), effectiveness, regression plots, and failure histograms confirm the efficiency of the (LMB-SNN) scheme.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03226-0</doi><orcidid>https://orcid.org/0000-0003-4375-1958</orcidid><orcidid>https://orcid.org/0000-0002-4040-6211</orcidid><orcidid>https://orcid.org/0000-0002-5402-8960</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2022-09, Vol.137 (9), p.1062, Article 1062 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919500017 |
source | Springer Link |
subjects | Applied and Technical Physics Atomic Back propagation networks Boundary value problems Color removal Comparative studies Complex Systems Condensed Matter Physics Design Dyes Environmentalists Error functions Fluid flow Initial pressure Investigations Machine learning Mathematical and Computational Physics Mathematical models Molecular Neural networks Nonlinear differential equations Numerical analysis Optical and Plasma Physics Partial differential equations Physics Physics and Astronomy Regular Article Runge-Kutta method Sewage Sewer systems Statistical analysis Theoretical Titanium dioxide Wastewater treatment Zinc oxide |
title | Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20features%20analysis%20of%20a%20model%20for%20separation%20of%20dissolved%20substances%20from%20a%20fluid%20flow%20by%20using%20a%20hybrid%20heuristic&rft.jtitle=European%20physical%20journal%20plus&rft.au=Kamal,%20Mustafa&rft.date=2022-09-17&rft.volume=137&rft.issue=9&rft.spage=1062&rft.pages=1062-&rft.artnum=1062&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03226-0&rft_dat=%3Cproquest_cross%3E2919500017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919500017&rft_id=info:pmid/&rfr_iscdi=true |