Loading…

Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic

Removal of dyes from wastewater is a challenging task for scientists and environmentalists. This work has studied a mathematical model characterizing the typical staining process within sewage systems. Two widely used nanoparticles, ZnO , and T i O 2 , are used to remove dyes from wastewater. The BE...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2022-09, Vol.137 (9), p.1062, Article 1062
Main Authors: Kamal, Mustafa, Sulaiman, Muhammad, Alshammari, Fahad Sameer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283
cites cdi_FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283
container_end_page
container_issue 9
container_start_page 1062
container_title European physical journal plus
container_volume 137
creator Kamal, Mustafa
Sulaiman, Muhammad
Alshammari, Fahad Sameer
description Removal of dyes from wastewater is a challenging task for scientists and environmentalists. This work has studied a mathematical model characterizing the typical staining process within sewage systems. Two widely used nanoparticles, ZnO , and T i O 2 , are used to remove dyes from wastewater. The BET (Brunauer, Emmett, and Teller) method determines the pore diameter d. The mathematical model of the phenomenon is modeled as a highly nonlinear partial differential equation (HNDE), detailed in a semi-infinite domain. In the present study, a hybridization of the Levenberg-Marquardt Backpropagation and Supervised Neural Network (LMB-SNN) is utilized to find the model’s surrogate solutions. The Runge-Kutta of the order four (RK4) technique is used to create reference solutions. We have analyzed our surrogate solution models by considering eight different scenarios. The stability and equilibrium of the mathematical model are checked by varying physical quantities like the ratio of final pressure to initial pressure. Our candidate solutions are divided into training, testing, and experimental categories to establish the reliability of our machine learning procedure. Comparative studies of statistical values based on mean squared error function (MSEF), effectiveness, regression plots, and failure histograms confirm the efficiency of the (LMB-SNN) scheme.
doi_str_mv 10.1140/epjp/s13360-022-03226-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919500017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919500017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMoKKu_wYDnapJm281RFr9gQQQ9h2k70SzdpmbalV787WZdQW_mMAmT9xmSh7FzKS6l1OIK-3V_RTLPC5EJpTKRK1Vk4oCdKGlENtdaH_45H7MzorVISxupjT5hn08jdIMfYPBb5A5hGCMShw7aiTzx4DjwTWiw5S5ETthDTNnQ7W4aTxTaLTacxooG6OqEuhg2iXHt6JtUwwevJj6S715T922qYmq_4Rg9Db4-ZUcOWsKzn33GXm5vnpf32erx7mF5vcpqWaa3G62VQoGAjZtD1UCDhambSrjSCWdQG1XNC5ejE1CiVqWRVV4sAKp8AYVa5DN2sZ_bx_A-Ig12HcaYPklWGWnmyYgsU6rcp-oYiCI620e_gThZKezOt935tnvfNvm2375TnbHFnqREdK8Yf-f_h34B5XyJww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919500017</pqid></control><display><type>article</type><title>Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic</title><source>Springer Link</source><creator>Kamal, Mustafa ; Sulaiman, Muhammad ; Alshammari, Fahad Sameer</creator><creatorcontrib>Kamal, Mustafa ; Sulaiman, Muhammad ; Alshammari, Fahad Sameer</creatorcontrib><description>Removal of dyes from wastewater is a challenging task for scientists and environmentalists. This work has studied a mathematical model characterizing the typical staining process within sewage systems. Two widely used nanoparticles, ZnO , and T i O 2 , are used to remove dyes from wastewater. The BET (Brunauer, Emmett, and Teller) method determines the pore diameter d. The mathematical model of the phenomenon is modeled as a highly nonlinear partial differential equation (HNDE), detailed in a semi-infinite domain. In the present study, a hybridization of the Levenberg-Marquardt Backpropagation and Supervised Neural Network (LMB-SNN) is utilized to find the model’s surrogate solutions. The Runge-Kutta of the order four (RK4) technique is used to create reference solutions. We have analyzed our surrogate solution models by considering eight different scenarios. The stability and equilibrium of the mathematical model are checked by varying physical quantities like the ratio of final pressure to initial pressure. Our candidate solutions are divided into training, testing, and experimental categories to establish the reliability of our machine learning procedure. Comparative studies of statistical values based on mean squared error function (MSEF), effectiveness, regression plots, and failure histograms confirm the efficiency of the (LMB-SNN) scheme.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03226-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Back propagation networks ; Boundary value problems ; Color removal ; Comparative studies ; Complex Systems ; Condensed Matter Physics ; Design ; Dyes ; Environmentalists ; Error functions ; Fluid flow ; Initial pressure ; Investigations ; Machine learning ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Neural networks ; Nonlinear differential equations ; Numerical analysis ; Optical and Plasma Physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Regular Article ; Runge-Kutta method ; Sewage ; Sewer systems ; Statistical analysis ; Theoretical ; Titanium dioxide ; Wastewater treatment ; Zinc oxide</subject><ispartof>European physical journal plus, 2022-09, Vol.137 (9), p.1062, Article 1062</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283</citedby><cites>FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283</cites><orcidid>0000-0003-4375-1958 ; 0000-0002-4040-6211 ; 0000-0002-5402-8960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kamal, Mustafa</creatorcontrib><creatorcontrib>Sulaiman, Muhammad</creatorcontrib><creatorcontrib>Alshammari, Fahad Sameer</creatorcontrib><title>Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>Removal of dyes from wastewater is a challenging task for scientists and environmentalists. This work has studied a mathematical model characterizing the typical staining process within sewage systems. Two widely used nanoparticles, ZnO , and T i O 2 , are used to remove dyes from wastewater. The BET (Brunauer, Emmett, and Teller) method determines the pore diameter d. The mathematical model of the phenomenon is modeled as a highly nonlinear partial differential equation (HNDE), detailed in a semi-infinite domain. In the present study, a hybridization of the Levenberg-Marquardt Backpropagation and Supervised Neural Network (LMB-SNN) is utilized to find the model’s surrogate solutions. The Runge-Kutta of the order four (RK4) technique is used to create reference solutions. We have analyzed our surrogate solution models by considering eight different scenarios. The stability and equilibrium of the mathematical model are checked by varying physical quantities like the ratio of final pressure to initial pressure. Our candidate solutions are divided into training, testing, and experimental categories to establish the reliability of our machine learning procedure. Comparative studies of statistical values based on mean squared error function (MSEF), effectiveness, regression plots, and failure histograms confirm the efficiency of the (LMB-SNN) scheme.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Back propagation networks</subject><subject>Boundary value problems</subject><subject>Color removal</subject><subject>Comparative studies</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Design</subject><subject>Dyes</subject><subject>Environmentalists</subject><subject>Error functions</subject><subject>Fluid flow</subject><subject>Initial pressure</subject><subject>Investigations</subject><subject>Machine learning</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Neural networks</subject><subject>Nonlinear differential equations</subject><subject>Numerical analysis</subject><subject>Optical and Plasma Physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Runge-Kutta method</subject><subject>Sewage</subject><subject>Sewer systems</subject><subject>Statistical analysis</subject><subject>Theoretical</subject><subject>Titanium dioxide</subject><subject>Wastewater treatment</subject><subject>Zinc oxide</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMoKKu_wYDnapJm281RFr9gQQQ9h2k70SzdpmbalV787WZdQW_mMAmT9xmSh7FzKS6l1OIK-3V_RTLPC5EJpTKRK1Vk4oCdKGlENtdaH_45H7MzorVISxupjT5hn08jdIMfYPBb5A5hGCMShw7aiTzx4DjwTWiw5S5ETthDTNnQ7W4aTxTaLTacxooG6OqEuhg2iXHt6JtUwwevJj6S715T922qYmq_4Rg9Db4-ZUcOWsKzn33GXm5vnpf32erx7mF5vcpqWaa3G62VQoGAjZtD1UCDhambSrjSCWdQG1XNC5ejE1CiVqWRVV4sAKp8AYVa5DN2sZ_bx_A-Ig12HcaYPklWGWnmyYgsU6rcp-oYiCI620e_gThZKezOt935tnvfNvm2375TnbHFnqREdK8Yf-f_h34B5XyJww</recordid><startdate>20220917</startdate><enddate>20220917</enddate><creator>Kamal, Mustafa</creator><creator>Sulaiman, Muhammad</creator><creator>Alshammari, Fahad Sameer</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4375-1958</orcidid><orcidid>https://orcid.org/0000-0002-4040-6211</orcidid><orcidid>https://orcid.org/0000-0002-5402-8960</orcidid></search><sort><creationdate>20220917</creationdate><title>Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic</title><author>Kamal, Mustafa ; Sulaiman, Muhammad ; Alshammari, Fahad Sameer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Back propagation networks</topic><topic>Boundary value problems</topic><topic>Color removal</topic><topic>Comparative studies</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Design</topic><topic>Dyes</topic><topic>Environmentalists</topic><topic>Error functions</topic><topic>Fluid flow</topic><topic>Initial pressure</topic><topic>Investigations</topic><topic>Machine learning</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Neural networks</topic><topic>Nonlinear differential equations</topic><topic>Numerical analysis</topic><topic>Optical and Plasma Physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Runge-Kutta method</topic><topic>Sewage</topic><topic>Sewer systems</topic><topic>Statistical analysis</topic><topic>Theoretical</topic><topic>Titanium dioxide</topic><topic>Wastewater treatment</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamal, Mustafa</creatorcontrib><creatorcontrib>Sulaiman, Muhammad</creatorcontrib><creatorcontrib>Alshammari, Fahad Sameer</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamal, Mustafa</au><au>Sulaiman, Muhammad</au><au>Alshammari, Fahad Sameer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-09-17</date><risdate>2022</risdate><volume>137</volume><issue>9</issue><spage>1062</spage><pages>1062-</pages><artnum>1062</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>Removal of dyes from wastewater is a challenging task for scientists and environmentalists. This work has studied a mathematical model characterizing the typical staining process within sewage systems. Two widely used nanoparticles, ZnO , and T i O 2 , are used to remove dyes from wastewater. The BET (Brunauer, Emmett, and Teller) method determines the pore diameter d. The mathematical model of the phenomenon is modeled as a highly nonlinear partial differential equation (HNDE), detailed in a semi-infinite domain. In the present study, a hybridization of the Levenberg-Marquardt Backpropagation and Supervised Neural Network (LMB-SNN) is utilized to find the model’s surrogate solutions. The Runge-Kutta of the order four (RK4) technique is used to create reference solutions. We have analyzed our surrogate solution models by considering eight different scenarios. The stability and equilibrium of the mathematical model are checked by varying physical quantities like the ratio of final pressure to initial pressure. Our candidate solutions are divided into training, testing, and experimental categories to establish the reliability of our machine learning procedure. Comparative studies of statistical values based on mean squared error function (MSEF), effectiveness, regression plots, and failure histograms confirm the efficiency of the (LMB-SNN) scheme.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03226-0</doi><orcidid>https://orcid.org/0000-0003-4375-1958</orcidid><orcidid>https://orcid.org/0000-0002-4040-6211</orcidid><orcidid>https://orcid.org/0000-0002-5402-8960</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2022-09, Vol.137 (9), p.1062, Article 1062
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919500017
source Springer Link
subjects Applied and Technical Physics
Atomic
Back propagation networks
Boundary value problems
Color removal
Comparative studies
Complex Systems
Condensed Matter Physics
Design
Dyes
Environmentalists
Error functions
Fluid flow
Initial pressure
Investigations
Machine learning
Mathematical and Computational Physics
Mathematical models
Molecular
Neural networks
Nonlinear differential equations
Numerical analysis
Optical and Plasma Physics
Partial differential equations
Physics
Physics and Astronomy
Regular Article
Runge-Kutta method
Sewage
Sewer systems
Statistical analysis
Theoretical
Titanium dioxide
Wastewater treatment
Zinc oxide
title Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20features%20analysis%20of%20a%20model%20for%20separation%20of%20dissolved%20substances%20from%20a%20fluid%20flow%20by%20using%20a%20hybrid%20heuristic&rft.jtitle=European%20physical%20journal%20plus&rft.au=Kamal,%20Mustafa&rft.date=2022-09-17&rft.volume=137&rft.issue=9&rft.spage=1062&rft.pages=1062-&rft.artnum=1062&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03226-0&rft_dat=%3Cproquest_cross%3E2919500017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1790-94422e0eaedf5abdade69cdb0f7f0f9e492b56f3ef0a7e42791b368aab38a6283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919500017&rft_id=info:pmid/&rfr_iscdi=true