Loading…

Detecting anomalies in social network data consumption

As the popularity and usage of social media exploded over the years, understanding how social network users’ interests evolve gained importance in diverse fields, ranging from sociological studies to marketing. In this paper, we use two snapshots from the Twitter network and analyze data interest pa...

Full description

Saved in:
Bibliographic Details
Published in:Social network analysis and mining 2014-12, Vol.4 (1), p.231, Article 231
Main Authors: Akcora, Cuneyt Gurcan, Carminati, Barbara, Ferrari, Elena, Kantarcioglu, Murat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3
cites cdi_FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3
container_end_page
container_issue 1
container_start_page 231
container_title Social network analysis and mining
container_volume 4
creator Akcora, Cuneyt Gurcan
Carminati, Barbara
Ferrari, Elena
Kantarcioglu, Murat
description As the popularity and usage of social media exploded over the years, understanding how social network users’ interests evolve gained importance in diverse fields, ranging from sociological studies to marketing. In this paper, we use two snapshots from the Twitter network and analyze data interest patterns of users in time to understand individual and collective user behavior on social networks. Building topical profiles of users, we propose novel metrics to identify anomalous friendships, and validate our results with Amazon Mechanical Turk experiments. We show that although more than 80 % of all friendships on Twitter are created due to data interests, 83 % of all users have at least one friendship that can be explained neither by users’ past interest nor collective behavior of other similar users.
doi_str_mv 10.1007/s13278-014-0231-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919507237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919507237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWLQ_wNuC5-gks5vdHKV-QsGLnkPMTsrWNqlJivjv3bKiJ08zA8_7DjyMXQi4EgDtdRYo246DqDlIFByP2Ex0SvOmVvr4d2_glM1zXgOAAEQNasbULRVyZQiryoa4tZuBcjWEKkc32E0VqHzG9F71ttjKxZD3210ZYjhnJ95uMs1_5hl7vb97WTzy5fPD0-JmyR0KVbgD6RvUWiiHVBOgrbsGnHJvVmrvlaBOYUctSJA92a4eD9H3KJVE8uTxjF1OvbsUP_aUi1nHfQrjSyO10A20EtuREhPlUsw5kTe7NGxt-jICzMGQmQyZ0ZA5GDI4ZuSUySMbVpT-mv8PfQP36GeW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919507237</pqid></control><display><type>article</type><title>Detecting anomalies in social network data consumption</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Social Science Premium Collection</source><source>Springer Nature</source><source>Sociological Abstracts</source><creator>Akcora, Cuneyt Gurcan ; Carminati, Barbara ; Ferrari, Elena ; Kantarcioglu, Murat</creator><creatorcontrib>Akcora, Cuneyt Gurcan ; Carminati, Barbara ; Ferrari, Elena ; Kantarcioglu, Murat</creatorcontrib><description>As the popularity and usage of social media exploded over the years, understanding how social network users’ interests evolve gained importance in diverse fields, ranging from sociological studies to marketing. In this paper, we use two snapshots from the Twitter network and analyze data interest patterns of users in time to understand individual and collective user behavior on social networks. Building topical profiles of users, we propose novel metrics to identify anomalous friendships, and validate our results with Amazon Mechanical Turk experiments. We show that although more than 80 % of all friendships on Twitter are created due to data interests, 83 % of all users have at least one friendship that can be explained neither by users’ past interest nor collective behavior of other similar users.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-014-0231-3</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Applications of Graph Theory and Complex Networks ; Collective behavior ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Economics ; Evolution ; Friendship ; Game Theory ; Humanities ; Law ; Marketing ; Methodology of the Social Sciences ; Original Article ; Popularity ; Social and Behav. Sciences ; Social media ; Social networks ; Sociology ; Statistics for Social Sciences ; User behavior</subject><ispartof>Social network analysis and mining, 2014-12, Vol.4 (1), p.231, Article 231</ispartof><rights>Springer-Verlag Wien 2014</rights><rights>Springer-Verlag Wien 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3</citedby><cites>FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2919507237?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,12826,21373,27321,27901,27902,33200,33588,33751,43709</link.rule.ids></links><search><creatorcontrib>Akcora, Cuneyt Gurcan</creatorcontrib><creatorcontrib>Carminati, Barbara</creatorcontrib><creatorcontrib>Ferrari, Elena</creatorcontrib><creatorcontrib>Kantarcioglu, Murat</creatorcontrib><title>Detecting anomalies in social network data consumption</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><description>As the popularity and usage of social media exploded over the years, understanding how social network users’ interests evolve gained importance in diverse fields, ranging from sociological studies to marketing. In this paper, we use two snapshots from the Twitter network and analyze data interest patterns of users in time to understand individual and collective user behavior on social networks. Building topical profiles of users, we propose novel metrics to identify anomalous friendships, and validate our results with Amazon Mechanical Turk experiments. We show that although more than 80 % of all friendships on Twitter are created due to data interests, 83 % of all users have at least one friendship that can be explained neither by users’ past interest nor collective behavior of other similar users.</description><subject>Applications of Graph Theory and Complex Networks</subject><subject>Collective behavior</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Economics</subject><subject>Evolution</subject><subject>Friendship</subject><subject>Game Theory</subject><subject>Humanities</subject><subject>Law</subject><subject>Marketing</subject><subject>Methodology of the Social Sciences</subject><subject>Original Article</subject><subject>Popularity</subject><subject>Social and Behav. Sciences</subject><subject>Social media</subject><subject>Social networks</subject><subject>Sociology</subject><subject>Statistics for Social Sciences</subject><subject>User behavior</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>BHHNA</sourceid><sourceid>M2R</sourceid><recordid>eNp1kE1LAzEQhoMoWLQ_wNuC5-gks5vdHKV-QsGLnkPMTsrWNqlJivjv3bKiJ08zA8_7DjyMXQi4EgDtdRYo246DqDlIFByP2Ex0SvOmVvr4d2_glM1zXgOAAEQNasbULRVyZQiryoa4tZuBcjWEKkc32E0VqHzG9F71ttjKxZD3210ZYjhnJ95uMs1_5hl7vb97WTzy5fPD0-JmyR0KVbgD6RvUWiiHVBOgrbsGnHJvVmrvlaBOYUctSJA92a4eD9H3KJVE8uTxjF1OvbsUP_aUi1nHfQrjSyO10A20EtuREhPlUsw5kTe7NGxt-jICzMGQmQyZ0ZA5GDI4ZuSUySMbVpT-mv8PfQP36GeW</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Akcora, Cuneyt Gurcan</creator><creator>Carminati, Barbara</creator><creator>Ferrari, Elena</creator><creator>Kantarcioglu, Murat</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7U4</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>WZK</scope></search><sort><creationdate>20141201</creationdate><title>Detecting anomalies in social network data consumption</title><author>Akcora, Cuneyt Gurcan ; Carminati, Barbara ; Ferrari, Elena ; Kantarcioglu, Murat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Graph Theory and Complex Networks</topic><topic>Collective behavior</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Economics</topic><topic>Evolution</topic><topic>Friendship</topic><topic>Game Theory</topic><topic>Humanities</topic><topic>Law</topic><topic>Marketing</topic><topic>Methodology of the Social Sciences</topic><topic>Original Article</topic><topic>Popularity</topic><topic>Social and Behav. Sciences</topic><topic>Social media</topic><topic>Social networks</topic><topic>Sociology</topic><topic>Statistics for Social Sciences</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akcora, Cuneyt Gurcan</creatorcontrib><creatorcontrib>Carminati, Barbara</creatorcontrib><creatorcontrib>Ferrari, Elena</creatorcontrib><creatorcontrib>Kantarcioglu, Murat</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akcora, Cuneyt Gurcan</au><au>Carminati, Barbara</au><au>Ferrari, Elena</au><au>Kantarcioglu, Murat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting anomalies in social network data consumption</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>231</spage><pages>231-</pages><artnum>231</artnum><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>As the popularity and usage of social media exploded over the years, understanding how social network users’ interests evolve gained importance in diverse fields, ranging from sociological studies to marketing. In this paper, we use two snapshots from the Twitter network and analyze data interest patterns of users in time to understand individual and collective user behavior on social networks. Building topical profiles of users, we propose novel metrics to identify anomalous friendships, and validate our results with Amazon Mechanical Turk experiments. We show that although more than 80 % of all friendships on Twitter are created due to data interests, 83 % of all users have at least one friendship that can be explained neither by users’ past interest nor collective behavior of other similar users.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13278-014-0231-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 1869-5450
ispartof Social network analysis and mining, 2014-12, Vol.4 (1), p.231, Article 231
issn 1869-5450
1869-5469
language eng
recordid cdi_proquest_journals_2919507237
source International Bibliography of the Social Sciences (IBSS); Social Science Premium Collection; Springer Nature; Sociological Abstracts
subjects Applications of Graph Theory and Complex Networks
Collective behavior
Computer Science
Data Mining and Knowledge Discovery
Datasets
Economics
Evolution
Friendship
Game Theory
Humanities
Law
Marketing
Methodology of the Social Sciences
Original Article
Popularity
Social and Behav. Sciences
Social media
Social networks
Sociology
Statistics for Social Sciences
User behavior
title Detecting anomalies in social network data consumption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20anomalies%20in%20social%20network%20data%20consumption&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Akcora,%20Cuneyt%20Gurcan&rft.date=2014-12-01&rft.volume=4&rft.issue=1&rft.spage=231&rft.pages=231-&rft.artnum=231&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-014-0231-3&rft_dat=%3Cproquest_cross%3E2919507237%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919507237&rft_id=info:pmid/&rfr_iscdi=true