Loading…
Detecting anomalies in social network data consumption
As the popularity and usage of social media exploded over the years, understanding how social network users’ interests evolve gained importance in diverse fields, ranging from sociological studies to marketing. In this paper, we use two snapshots from the Twitter network and analyze data interest pa...
Saved in:
Published in: | Social network analysis and mining 2014-12, Vol.4 (1), p.231, Article 231 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3 |
container_end_page | |
container_issue | 1 |
container_start_page | 231 |
container_title | Social network analysis and mining |
container_volume | 4 |
creator | Akcora, Cuneyt Gurcan Carminati, Barbara Ferrari, Elena Kantarcioglu, Murat |
description | As the popularity and usage of social media exploded over the years, understanding how social network users’ interests evolve gained importance in diverse fields, ranging from sociological studies to marketing. In this paper, we use two snapshots from the Twitter network and analyze data interest patterns of users in time to understand individual and collective user behavior on social networks. Building topical profiles of users, we propose novel metrics to identify anomalous friendships, and validate our results with Amazon Mechanical Turk experiments. We show that although more than 80 % of all friendships on Twitter are created due to data interests, 83 % of all users have at least one friendship that can be explained neither by users’ past interest nor collective behavior of other similar users. |
doi_str_mv | 10.1007/s13278-014-0231-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919507237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919507237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWLQ_wNuC5-gks5vdHKV-QsGLnkPMTsrWNqlJivjv3bKiJ08zA8_7DjyMXQi4EgDtdRYo246DqDlIFByP2Ex0SvOmVvr4d2_glM1zXgOAAEQNasbULRVyZQiryoa4tZuBcjWEKkc32E0VqHzG9F71ttjKxZD3210ZYjhnJ95uMs1_5hl7vb97WTzy5fPD0-JmyR0KVbgD6RvUWiiHVBOgrbsGnHJvVmrvlaBOYUctSJA92a4eD9H3KJVE8uTxjF1OvbsUP_aUi1nHfQrjSyO10A20EtuREhPlUsw5kTe7NGxt-jICzMGQmQyZ0ZA5GDI4ZuSUySMbVpT-mv8PfQP36GeW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919507237</pqid></control><display><type>article</type><title>Detecting anomalies in social network data consumption</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Social Science Premium Collection</source><source>Springer Nature</source><source>Sociological Abstracts</source><creator>Akcora, Cuneyt Gurcan ; Carminati, Barbara ; Ferrari, Elena ; Kantarcioglu, Murat</creator><creatorcontrib>Akcora, Cuneyt Gurcan ; Carminati, Barbara ; Ferrari, Elena ; Kantarcioglu, Murat</creatorcontrib><description>As the popularity and usage of social media exploded over the years, understanding how social network users’ interests evolve gained importance in diverse fields, ranging from sociological studies to marketing. In this paper, we use two snapshots from the Twitter network and analyze data interest patterns of users in time to understand individual and collective user behavior on social networks. Building topical profiles of users, we propose novel metrics to identify anomalous friendships, and validate our results with Amazon Mechanical Turk experiments. We show that although more than 80 % of all friendships on Twitter are created due to data interests, 83 % of all users have at least one friendship that can be explained neither by users’ past interest nor collective behavior of other similar users.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-014-0231-3</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Applications of Graph Theory and Complex Networks ; Collective behavior ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Economics ; Evolution ; Friendship ; Game Theory ; Humanities ; Law ; Marketing ; Methodology of the Social Sciences ; Original Article ; Popularity ; Social and Behav. Sciences ; Social media ; Social networks ; Sociology ; Statistics for Social Sciences ; User behavior</subject><ispartof>Social network analysis and mining, 2014-12, Vol.4 (1), p.231, Article 231</ispartof><rights>Springer-Verlag Wien 2014</rights><rights>Springer-Verlag Wien 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3</citedby><cites>FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2919507237?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,12826,21373,27321,27901,27902,33200,33588,33751,43709</link.rule.ids></links><search><creatorcontrib>Akcora, Cuneyt Gurcan</creatorcontrib><creatorcontrib>Carminati, Barbara</creatorcontrib><creatorcontrib>Ferrari, Elena</creatorcontrib><creatorcontrib>Kantarcioglu, Murat</creatorcontrib><title>Detecting anomalies in social network data consumption</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><description>As the popularity and usage of social media exploded over the years, understanding how social network users’ interests evolve gained importance in diverse fields, ranging from sociological studies to marketing. In this paper, we use two snapshots from the Twitter network and analyze data interest patterns of users in time to understand individual and collective user behavior on social networks. Building topical profiles of users, we propose novel metrics to identify anomalous friendships, and validate our results with Amazon Mechanical Turk experiments. We show that although more than 80 % of all friendships on Twitter are created due to data interests, 83 % of all users have at least one friendship that can be explained neither by users’ past interest nor collective behavior of other similar users.</description><subject>Applications of Graph Theory and Complex Networks</subject><subject>Collective behavior</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Economics</subject><subject>Evolution</subject><subject>Friendship</subject><subject>Game Theory</subject><subject>Humanities</subject><subject>Law</subject><subject>Marketing</subject><subject>Methodology of the Social Sciences</subject><subject>Original Article</subject><subject>Popularity</subject><subject>Social and Behav. Sciences</subject><subject>Social media</subject><subject>Social networks</subject><subject>Sociology</subject><subject>Statistics for Social Sciences</subject><subject>User behavior</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>BHHNA</sourceid><sourceid>M2R</sourceid><recordid>eNp1kE1LAzEQhoMoWLQ_wNuC5-gks5vdHKV-QsGLnkPMTsrWNqlJivjv3bKiJ08zA8_7DjyMXQi4EgDtdRYo246DqDlIFByP2Ex0SvOmVvr4d2_glM1zXgOAAEQNasbULRVyZQiryoa4tZuBcjWEKkc32E0VqHzG9F71ttjKxZD3210ZYjhnJ95uMs1_5hl7vb97WTzy5fPD0-JmyR0KVbgD6RvUWiiHVBOgrbsGnHJvVmrvlaBOYUctSJA92a4eD9H3KJVE8uTxjF1OvbsUP_aUi1nHfQrjSyO10A20EtuREhPlUsw5kTe7NGxt-jICzMGQmQyZ0ZA5GDI4ZuSUySMbVpT-mv8PfQP36GeW</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Akcora, Cuneyt Gurcan</creator><creator>Carminati, Barbara</creator><creator>Ferrari, Elena</creator><creator>Kantarcioglu, Murat</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7U4</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>WZK</scope></search><sort><creationdate>20141201</creationdate><title>Detecting anomalies in social network data consumption</title><author>Akcora, Cuneyt Gurcan ; Carminati, Barbara ; Ferrari, Elena ; Kantarcioglu, Murat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Graph Theory and Complex Networks</topic><topic>Collective behavior</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Economics</topic><topic>Evolution</topic><topic>Friendship</topic><topic>Game Theory</topic><topic>Humanities</topic><topic>Law</topic><topic>Marketing</topic><topic>Methodology of the Social Sciences</topic><topic>Original Article</topic><topic>Popularity</topic><topic>Social and Behav. Sciences</topic><topic>Social media</topic><topic>Social networks</topic><topic>Sociology</topic><topic>Statistics for Social Sciences</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akcora, Cuneyt Gurcan</creatorcontrib><creatorcontrib>Carminati, Barbara</creatorcontrib><creatorcontrib>Ferrari, Elena</creatorcontrib><creatorcontrib>Kantarcioglu, Murat</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akcora, Cuneyt Gurcan</au><au>Carminati, Barbara</au><au>Ferrari, Elena</au><au>Kantarcioglu, Murat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting anomalies in social network data consumption</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>231</spage><pages>231-</pages><artnum>231</artnum><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>As the popularity and usage of social media exploded over the years, understanding how social network users’ interests evolve gained importance in diverse fields, ranging from sociological studies to marketing. In this paper, we use two snapshots from the Twitter network and analyze data interest patterns of users in time to understand individual and collective user behavior on social networks. Building topical profiles of users, we propose novel metrics to identify anomalous friendships, and validate our results with Amazon Mechanical Turk experiments. We show that although more than 80 % of all friendships on Twitter are created due to data interests, 83 % of all users have at least one friendship that can be explained neither by users’ past interest nor collective behavior of other similar users.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13278-014-0231-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-5450 |
ispartof | Social network analysis and mining, 2014-12, Vol.4 (1), p.231, Article 231 |
issn | 1869-5450 1869-5469 |
language | eng |
recordid | cdi_proquest_journals_2919507237 |
source | International Bibliography of the Social Sciences (IBSS); Social Science Premium Collection; Springer Nature; Sociological Abstracts |
subjects | Applications of Graph Theory and Complex Networks Collective behavior Computer Science Data Mining and Knowledge Discovery Datasets Economics Evolution Friendship Game Theory Humanities Law Marketing Methodology of the Social Sciences Original Article Popularity Social and Behav. Sciences Social media Social networks Sociology Statistics for Social Sciences User behavior |
title | Detecting anomalies in social network data consumption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20anomalies%20in%20social%20network%20data%20consumption&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Akcora,%20Cuneyt%20Gurcan&rft.date=2014-12-01&rft.volume=4&rft.issue=1&rft.spage=231&rft.pages=231-&rft.artnum=231&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-014-0231-3&rft_dat=%3Cproquest_cross%3E2919507237%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c02f539916c3e4e03a4850c6cba29ff61e8638e70202dea8438e1dd32623efef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919507237&rft_id=info:pmid/&rfr_iscdi=true |