Loading…
Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network
Nitrogen (N) concentration is a significant parameter to check the status of health in rice crop. Nitrogen (N) plays an essential role in the growth and productivity of rice plant. This paper proposes a convolutional neural network (CNN) based approach for prediction of rice nitrogen deficiency. The...
Saved in:
Published in: | Journal of ambient intelligence and humanized computing 2020-11, Vol.11 (11), p.5703-5711 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743 |
container_end_page | 5711 |
container_issue | 11 |
container_start_page | 5703 |
container_title | Journal of ambient intelligence and humanized computing |
container_volume | 11 |
creator | Sethy, Prabira Kumar Barpanda, Nalini Kanta Rath, Amiya Kumar Behera, Santi Kumari |
description | Nitrogen (N) concentration is a significant parameter to check the status of health in rice crop. Nitrogen (N) plays an essential role in the growth and productivity of rice plant. This paper proposes a convolutional neural network (CNN) based approach for prediction of rice nitrogen deficiency. The pre-trained CNN architecture is modified to improve the classification accuracy with the inclusion of pre-eminent classifier like support vector machine (SVM) by replacing the last output layer of CNN. Here, six leading deep learning architectures such as ResNet-18, ResNet-50, GoogleNet, AlexNet, VGG-16 and VGG-19 with SVM are used for prediction of nitrogen deficiency with 5790 number image samples. The performance of each classifier is measured and compared in terms of accuracy, sensitivity, specificity, false positive rate (FPR) and F1 score. Again, the statistical analysis is performed to choose the better classification model considering the results of 100 independent simulations. The statistical analysis confirmed the superiority of ResNet-50+SVM than the other five CNN-based classification models with an accuracy of 99.84%. Besides, the accuracy score of CNN classification models is compared with other traditional image classification models such as bag-of-feature, colour feature + SVM, local binary patterns (LBP) + SVM, histogram of oriented gradients (HOG)+SVM and Gray Level Co-occurrence Matrix (GLCM)+SVM. |
doi_str_mv | 10.1007/s12652-020-01938-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919537403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919537403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEhX0D3CyxDng9SO2jxCeUlUegrPlOE6VUuJiJ6D-e9IGwY29zGo1M1p9CJ0AOQNC5HkCmguaEUoyApqpTO2hCahcZQK42P_dmTxE05SWZBimGQBM0NO86WJY-BZf-bpxjW_dBj9GXzWua0KLQ42fG-dxEcMaX9rkKzxci9B-hlW_ddgVnvs-7qT7CvHtGB3UdpX89EeP0OvN9Utxl80ebu-Li1nmGOguK6UD7mRVWeE5J45ZInilqNC0LGtZVqLOhYLc5znlYK3SUjnGgErhLZWcHaHTsXcdw0fvU2eWoY_DP8lQDVowyQkbXHR0uRhSir4269i827gxQMyWnhnpmYGe2dEzagixMZQGc7vw8a_6n9Q3479xJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919537403</pqid></control><display><type>article</type><title>Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network</title><source>Springer Nature</source><creator>Sethy, Prabira Kumar ; Barpanda, Nalini Kanta ; Rath, Amiya Kumar ; Behera, Santi Kumari</creator><creatorcontrib>Sethy, Prabira Kumar ; Barpanda, Nalini Kanta ; Rath, Amiya Kumar ; Behera, Santi Kumari</creatorcontrib><description>Nitrogen (N) concentration is a significant parameter to check the status of health in rice crop. Nitrogen (N) plays an essential role in the growth and productivity of rice plant. This paper proposes a convolutional neural network (CNN) based approach for prediction of rice nitrogen deficiency. The pre-trained CNN architecture is modified to improve the classification accuracy with the inclusion of pre-eminent classifier like support vector machine (SVM) by replacing the last output layer of CNN. Here, six leading deep learning architectures such as ResNet-18, ResNet-50, GoogleNet, AlexNet, VGG-16 and VGG-19 with SVM are used for prediction of nitrogen deficiency with 5790 number image samples. The performance of each classifier is measured and compared in terms of accuracy, sensitivity, specificity, false positive rate (FPR) and F1 score. Again, the statistical analysis is performed to choose the better classification model considering the results of 100 independent simulations. The statistical analysis confirmed the superiority of ResNet-50+SVM than the other five CNN-based classification models with an accuracy of 99.84%. Besides, the accuracy score of CNN classification models is compared with other traditional image classification models such as bag-of-feature, colour feature + SVM, local binary patterns (LBP) + SVM, histogram of oriented gradients (HOG)+SVM and Gray Level Co-occurrence Matrix (GLCM)+SVM.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-020-01938-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial Intelligence ; Artificial neural networks ; Automation ; Classification ; Classifiers ; Computational Intelligence ; Crop diseases ; Crops ; Deep learning ; Dietary minerals ; Discriminant analysis ; Engineering ; Farmers ; Image classification ; Leaves ; Machine learning ; Medical diagnosis ; Nitrogen ; Original Research ; Phosphorus ; Plant diseases ; Rice ; Robotics and Automation ; Statistical analysis ; Support vector machines ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2020-11, Vol.11 (11), p.5703-5711</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743</citedby><cites>FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sethy, Prabira Kumar</creatorcontrib><creatorcontrib>Barpanda, Nalini Kanta</creatorcontrib><creatorcontrib>Rath, Amiya Kumar</creatorcontrib><creatorcontrib>Behera, Santi Kumari</creatorcontrib><title>Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>Nitrogen (N) concentration is a significant parameter to check the status of health in rice crop. Nitrogen (N) plays an essential role in the growth and productivity of rice plant. This paper proposes a convolutional neural network (CNN) based approach for prediction of rice nitrogen deficiency. The pre-trained CNN architecture is modified to improve the classification accuracy with the inclusion of pre-eminent classifier like support vector machine (SVM) by replacing the last output layer of CNN. Here, six leading deep learning architectures such as ResNet-18, ResNet-50, GoogleNet, AlexNet, VGG-16 and VGG-19 with SVM are used for prediction of nitrogen deficiency with 5790 number image samples. The performance of each classifier is measured and compared in terms of accuracy, sensitivity, specificity, false positive rate (FPR) and F1 score. Again, the statistical analysis is performed to choose the better classification model considering the results of 100 independent simulations. The statistical analysis confirmed the superiority of ResNet-50+SVM than the other five CNN-based classification models with an accuracy of 99.84%. Besides, the accuracy score of CNN classification models is compared with other traditional image classification models such as bag-of-feature, colour feature + SVM, local binary patterns (LBP) + SVM, histogram of oriented gradients (HOG)+SVM and Gray Level Co-occurrence Matrix (GLCM)+SVM.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computational Intelligence</subject><subject>Crop diseases</subject><subject>Crops</subject><subject>Deep learning</subject><subject>Dietary minerals</subject><subject>Discriminant analysis</subject><subject>Engineering</subject><subject>Farmers</subject><subject>Image classification</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Nitrogen</subject><subject>Original Research</subject><subject>Phosphorus</subject><subject>Plant diseases</subject><subject>Rice</subject><subject>Robotics and Automation</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEhX0D3CyxDng9SO2jxCeUlUegrPlOE6VUuJiJ6D-e9IGwY29zGo1M1p9CJ0AOQNC5HkCmguaEUoyApqpTO2hCahcZQK42P_dmTxE05SWZBimGQBM0NO86WJY-BZf-bpxjW_dBj9GXzWua0KLQ42fG-dxEcMaX9rkKzxci9B-hlW_ddgVnvs-7qT7CvHtGB3UdpX89EeP0OvN9Utxl80ebu-Li1nmGOguK6UD7mRVWeE5J45ZInilqNC0LGtZVqLOhYLc5znlYK3SUjnGgErhLZWcHaHTsXcdw0fvU2eWoY_DP8lQDVowyQkbXHR0uRhSir4269i827gxQMyWnhnpmYGe2dEzagixMZQGc7vw8a_6n9Q3479xJw</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Sethy, Prabira Kumar</creator><creator>Barpanda, Nalini Kanta</creator><creator>Rath, Amiya Kumar</creator><creator>Behera, Santi Kumari</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20201101</creationdate><title>Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network</title><author>Sethy, Prabira Kumar ; Barpanda, Nalini Kanta ; Rath, Amiya Kumar ; Behera, Santi Kumari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computational Intelligence</topic><topic>Crop diseases</topic><topic>Crops</topic><topic>Deep learning</topic><topic>Dietary minerals</topic><topic>Discriminant analysis</topic><topic>Engineering</topic><topic>Farmers</topic><topic>Image classification</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Nitrogen</topic><topic>Original Research</topic><topic>Phosphorus</topic><topic>Plant diseases</topic><topic>Rice</topic><topic>Robotics and Automation</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethy, Prabira Kumar</creatorcontrib><creatorcontrib>Barpanda, Nalini Kanta</creatorcontrib><creatorcontrib>Rath, Amiya Kumar</creatorcontrib><creatorcontrib>Behera, Santi Kumari</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethy, Prabira Kumar</au><au>Barpanda, Nalini Kanta</au><au>Rath, Amiya Kumar</au><au>Behera, Santi Kumari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>11</volume><issue>11</issue><spage>5703</spage><epage>5711</epage><pages>5703-5711</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Nitrogen (N) concentration is a significant parameter to check the status of health in rice crop. Nitrogen (N) plays an essential role in the growth and productivity of rice plant. This paper proposes a convolutional neural network (CNN) based approach for prediction of rice nitrogen deficiency. The pre-trained CNN architecture is modified to improve the classification accuracy with the inclusion of pre-eminent classifier like support vector machine (SVM) by replacing the last output layer of CNN. Here, six leading deep learning architectures such as ResNet-18, ResNet-50, GoogleNet, AlexNet, VGG-16 and VGG-19 with SVM are used for prediction of nitrogen deficiency with 5790 number image samples. The performance of each classifier is measured and compared in terms of accuracy, sensitivity, specificity, false positive rate (FPR) and F1 score. Again, the statistical analysis is performed to choose the better classification model considering the results of 100 independent simulations. The statistical analysis confirmed the superiority of ResNet-50+SVM than the other five CNN-based classification models with an accuracy of 99.84%. Besides, the accuracy score of CNN classification models is compared with other traditional image classification models such as bag-of-feature, colour feature + SVM, local binary patterns (LBP) + SVM, histogram of oriented gradients (HOG)+SVM and Gray Level Co-occurrence Matrix (GLCM)+SVM.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-020-01938-8</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-5137 |
ispartof | Journal of ambient intelligence and humanized computing, 2020-11, Vol.11 (11), p.5703-5711 |
issn | 1868-5137 1868-5145 |
language | eng |
recordid | cdi_proquest_journals_2919537403 |
source | Springer Nature |
subjects | Accuracy Artificial Intelligence Artificial neural networks Automation Classification Classifiers Computational Intelligence Crop diseases Crops Deep learning Dietary minerals Discriminant analysis Engineering Farmers Image classification Leaves Machine learning Medical diagnosis Nitrogen Original Research Phosphorus Plant diseases Rice Robotics and Automation Statistical analysis Support vector machines User Interfaces and Human Computer Interaction |
title | Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20Deficiency%20Prediction%20of%20Rice%20Crop%20Based%20on%20Convolutional%20Neural%20Network&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Sethy,%20Prabira%20Kumar&rft.date=2020-11-01&rft.volume=11&rft.issue=11&rft.spage=5703&rft.epage=5711&rft.pages=5703-5711&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-020-01938-8&rft_dat=%3Cproquest_cross%3E2919537403%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919537403&rft_id=info:pmid/&rfr_iscdi=true |