Loading…

Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network

Nitrogen (N) concentration is a significant parameter to check the status of health in rice crop. Nitrogen (N) plays an essential role in the growth and productivity of rice plant. This paper proposes a convolutional neural network (CNN) based approach for prediction of rice nitrogen deficiency. The...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ambient intelligence and humanized computing 2020-11, Vol.11 (11), p.5703-5711
Main Authors: Sethy, Prabira Kumar, Barpanda, Nalini Kanta, Rath, Amiya Kumar, Behera, Santi Kumari
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743
cites cdi_FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743
container_end_page 5711
container_issue 11
container_start_page 5703
container_title Journal of ambient intelligence and humanized computing
container_volume 11
creator Sethy, Prabira Kumar
Barpanda, Nalini Kanta
Rath, Amiya Kumar
Behera, Santi Kumari
description Nitrogen (N) concentration is a significant parameter to check the status of health in rice crop. Nitrogen (N) plays an essential role in the growth and productivity of rice plant. This paper proposes a convolutional neural network (CNN) based approach for prediction of rice nitrogen deficiency. The pre-trained CNN architecture is modified to improve the classification accuracy with the inclusion of pre-eminent classifier like support vector machine (SVM) by replacing the last output layer of CNN. Here, six leading deep learning architectures such as ResNet-18, ResNet-50, GoogleNet, AlexNet, VGG-16 and VGG-19 with SVM are used for prediction of nitrogen deficiency with 5790 number image samples. The performance of each classifier is measured and compared in terms of accuracy, sensitivity, specificity, false positive rate (FPR) and F1 score. Again, the statistical analysis is performed to choose the better classification model considering the results of 100 independent simulations. The statistical analysis confirmed the superiority of ResNet-50+SVM than the other five CNN-based classification models with an accuracy of 99.84%. Besides, the accuracy score of CNN classification models is compared with other traditional image classification models such as bag-of-feature, colour feature + SVM, local binary patterns (LBP) + SVM, histogram of oriented gradients (HOG)+SVM and Gray Level Co-occurrence Matrix (GLCM)+SVM.
doi_str_mv 10.1007/s12652-020-01938-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919537403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919537403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEhX0D3CyxDng9SO2jxCeUlUegrPlOE6VUuJiJ6D-e9IGwY29zGo1M1p9CJ0AOQNC5HkCmguaEUoyApqpTO2hCahcZQK42P_dmTxE05SWZBimGQBM0NO86WJY-BZf-bpxjW_dBj9GXzWua0KLQ42fG-dxEcMaX9rkKzxci9B-hlW_ddgVnvs-7qT7CvHtGB3UdpX89EeP0OvN9Utxl80ebu-Li1nmGOguK6UD7mRVWeE5J45ZInilqNC0LGtZVqLOhYLc5znlYK3SUjnGgErhLZWcHaHTsXcdw0fvU2eWoY_DP8lQDVowyQkbXHR0uRhSir4269i827gxQMyWnhnpmYGe2dEzagixMZQGc7vw8a_6n9Q3479xJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919537403</pqid></control><display><type>article</type><title>Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network</title><source>Springer Nature</source><creator>Sethy, Prabira Kumar ; Barpanda, Nalini Kanta ; Rath, Amiya Kumar ; Behera, Santi Kumari</creator><creatorcontrib>Sethy, Prabira Kumar ; Barpanda, Nalini Kanta ; Rath, Amiya Kumar ; Behera, Santi Kumari</creatorcontrib><description>Nitrogen (N) concentration is a significant parameter to check the status of health in rice crop. Nitrogen (N) plays an essential role in the growth and productivity of rice plant. This paper proposes a convolutional neural network (CNN) based approach for prediction of rice nitrogen deficiency. The pre-trained CNN architecture is modified to improve the classification accuracy with the inclusion of pre-eminent classifier like support vector machine (SVM) by replacing the last output layer of CNN. Here, six leading deep learning architectures such as ResNet-18, ResNet-50, GoogleNet, AlexNet, VGG-16 and VGG-19 with SVM are used for prediction of nitrogen deficiency with 5790 number image samples. The performance of each classifier is measured and compared in terms of accuracy, sensitivity, specificity, false positive rate (FPR) and F1 score. Again, the statistical analysis is performed to choose the better classification model considering the results of 100 independent simulations. The statistical analysis confirmed the superiority of ResNet-50+SVM than the other five CNN-based classification models with an accuracy of 99.84%. Besides, the accuracy score of CNN classification models is compared with other traditional image classification models such as bag-of-feature, colour feature + SVM, local binary patterns (LBP) + SVM, histogram of oriented gradients (HOG)+SVM and Gray Level Co-occurrence Matrix (GLCM)+SVM.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-020-01938-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial Intelligence ; Artificial neural networks ; Automation ; Classification ; Classifiers ; Computational Intelligence ; Crop diseases ; Crops ; Deep learning ; Dietary minerals ; Discriminant analysis ; Engineering ; Farmers ; Image classification ; Leaves ; Machine learning ; Medical diagnosis ; Nitrogen ; Original Research ; Phosphorus ; Plant diseases ; Rice ; Robotics and Automation ; Statistical analysis ; Support vector machines ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2020-11, Vol.11 (11), p.5703-5711</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743</citedby><cites>FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sethy, Prabira Kumar</creatorcontrib><creatorcontrib>Barpanda, Nalini Kanta</creatorcontrib><creatorcontrib>Rath, Amiya Kumar</creatorcontrib><creatorcontrib>Behera, Santi Kumari</creatorcontrib><title>Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>Nitrogen (N) concentration is a significant parameter to check the status of health in rice crop. Nitrogen (N) plays an essential role in the growth and productivity of rice plant. This paper proposes a convolutional neural network (CNN) based approach for prediction of rice nitrogen deficiency. The pre-trained CNN architecture is modified to improve the classification accuracy with the inclusion of pre-eminent classifier like support vector machine (SVM) by replacing the last output layer of CNN. Here, six leading deep learning architectures such as ResNet-18, ResNet-50, GoogleNet, AlexNet, VGG-16 and VGG-19 with SVM are used for prediction of nitrogen deficiency with 5790 number image samples. The performance of each classifier is measured and compared in terms of accuracy, sensitivity, specificity, false positive rate (FPR) and F1 score. Again, the statistical analysis is performed to choose the better classification model considering the results of 100 independent simulations. The statistical analysis confirmed the superiority of ResNet-50+SVM than the other five CNN-based classification models with an accuracy of 99.84%. Besides, the accuracy score of CNN classification models is compared with other traditional image classification models such as bag-of-feature, colour feature + SVM, local binary patterns (LBP) + SVM, histogram of oriented gradients (HOG)+SVM and Gray Level Co-occurrence Matrix (GLCM)+SVM.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computational Intelligence</subject><subject>Crop diseases</subject><subject>Crops</subject><subject>Deep learning</subject><subject>Dietary minerals</subject><subject>Discriminant analysis</subject><subject>Engineering</subject><subject>Farmers</subject><subject>Image classification</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Nitrogen</subject><subject>Original Research</subject><subject>Phosphorus</subject><subject>Plant diseases</subject><subject>Rice</subject><subject>Robotics and Automation</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEhX0D3CyxDng9SO2jxCeUlUegrPlOE6VUuJiJ6D-e9IGwY29zGo1M1p9CJ0AOQNC5HkCmguaEUoyApqpTO2hCahcZQK42P_dmTxE05SWZBimGQBM0NO86WJY-BZf-bpxjW_dBj9GXzWua0KLQ42fG-dxEcMaX9rkKzxci9B-hlW_ddgVnvs-7qT7CvHtGB3UdpX89EeP0OvN9Utxl80ebu-Li1nmGOguK6UD7mRVWeE5J45ZInilqNC0LGtZVqLOhYLc5znlYK3SUjnGgErhLZWcHaHTsXcdw0fvU2eWoY_DP8lQDVowyQkbXHR0uRhSir4269i827gxQMyWnhnpmYGe2dEzagixMZQGc7vw8a_6n9Q3479xJw</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Sethy, Prabira Kumar</creator><creator>Barpanda, Nalini Kanta</creator><creator>Rath, Amiya Kumar</creator><creator>Behera, Santi Kumari</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20201101</creationdate><title>Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network</title><author>Sethy, Prabira Kumar ; Barpanda, Nalini Kanta ; Rath, Amiya Kumar ; Behera, Santi Kumari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computational Intelligence</topic><topic>Crop diseases</topic><topic>Crops</topic><topic>Deep learning</topic><topic>Dietary minerals</topic><topic>Discriminant analysis</topic><topic>Engineering</topic><topic>Farmers</topic><topic>Image classification</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Nitrogen</topic><topic>Original Research</topic><topic>Phosphorus</topic><topic>Plant diseases</topic><topic>Rice</topic><topic>Robotics and Automation</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethy, Prabira Kumar</creatorcontrib><creatorcontrib>Barpanda, Nalini Kanta</creatorcontrib><creatorcontrib>Rath, Amiya Kumar</creatorcontrib><creatorcontrib>Behera, Santi Kumari</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethy, Prabira Kumar</au><au>Barpanda, Nalini Kanta</au><au>Rath, Amiya Kumar</au><au>Behera, Santi Kumari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>11</volume><issue>11</issue><spage>5703</spage><epage>5711</epage><pages>5703-5711</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Nitrogen (N) concentration is a significant parameter to check the status of health in rice crop. Nitrogen (N) plays an essential role in the growth and productivity of rice plant. This paper proposes a convolutional neural network (CNN) based approach for prediction of rice nitrogen deficiency. The pre-trained CNN architecture is modified to improve the classification accuracy with the inclusion of pre-eminent classifier like support vector machine (SVM) by replacing the last output layer of CNN. Here, six leading deep learning architectures such as ResNet-18, ResNet-50, GoogleNet, AlexNet, VGG-16 and VGG-19 with SVM are used for prediction of nitrogen deficiency with 5790 number image samples. The performance of each classifier is measured and compared in terms of accuracy, sensitivity, specificity, false positive rate (FPR) and F1 score. Again, the statistical analysis is performed to choose the better classification model considering the results of 100 independent simulations. The statistical analysis confirmed the superiority of ResNet-50+SVM than the other five CNN-based classification models with an accuracy of 99.84%. Besides, the accuracy score of CNN classification models is compared with other traditional image classification models such as bag-of-feature, colour feature + SVM, local binary patterns (LBP) + SVM, histogram of oriented gradients (HOG)+SVM and Gray Level Co-occurrence Matrix (GLCM)+SVM.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-020-01938-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2020-11, Vol.11 (11), p.5703-5711
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_2919537403
source Springer Nature
subjects Accuracy
Artificial Intelligence
Artificial neural networks
Automation
Classification
Classifiers
Computational Intelligence
Crop diseases
Crops
Deep learning
Dietary minerals
Discriminant analysis
Engineering
Farmers
Image classification
Leaves
Machine learning
Medical diagnosis
Nitrogen
Original Research
Phosphorus
Plant diseases
Rice
Robotics and Automation
Statistical analysis
Support vector machines
User Interfaces and Human Computer Interaction
title Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20Deficiency%20Prediction%20of%20Rice%20Crop%20Based%20on%20Convolutional%20Neural%20Network&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Sethy,%20Prabira%20Kumar&rft.date=2020-11-01&rft.volume=11&rft.issue=11&rft.spage=5703&rft.epage=5711&rft.pages=5703-5711&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-020-01938-8&rft_dat=%3Cproquest_cross%3E2919537403%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b7c14c7dda5e440c3a054d82592bbf7bd5f65816e66241aa8978c331275ea2743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919537403&rft_id=info:pmid/&rfr_iscdi=true