Loading…

Dual stratification and cross-diffusion effects on the non-orthogonal stagnation point flow of a nanofluid over an oscillating surface

In the fields of hydrology, environmental engineering and thermal energy storage systems, the large temperature and concentration gradients lead to simultaneous diffusion and stratification phenomena. The non-orthogonal stagnation flows are significant due to their applications in many hydrodynamica...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2023-09, Vol.138 (9), p.831, Article 831
Main Authors: Dhiman, Samriti, Sharma, Tanya, Singh, Kuldeep, Nisar, Kottakkaran S., Kumar, Rakesh, Raju, C. S. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-8cd07b37dbb3d4fa2875b2e841ba1420a2e6be654a60c8a549c222d44f0bc393
cites cdi_FETCH-LOGICAL-c334t-8cd07b37dbb3d4fa2875b2e841ba1420a2e6be654a60c8a549c222d44f0bc393
container_end_page
container_issue 9
container_start_page 831
container_title European physical journal plus
container_volume 138
creator Dhiman, Samriti
Sharma, Tanya
Singh, Kuldeep
Nisar, Kottakkaran S.
Kumar, Rakesh
Raju, C. S. K.
description In the fields of hydrology, environmental engineering and thermal energy storage systems, the large temperature and concentration gradients lead to simultaneous diffusion and stratification phenomena. The non-orthogonal stagnation flows are significant due to their applications in many hydrodynamical processes for emergency shutdown cooling and energy harvesting. Therefore, the present study introduces the novel concept of thermal and solutal stratifications in a nanofluid’s non-orthogonal stagnation point flow. In the concentration and energy balance equations, the diffusive heats resulting from simultaneous mass and heat transport are also taken into account. The surface of stagnation is assumed to be oscillating and stretching linearly. The mathematical model developed under these assumptions is made dimension-free using appropriate variables. The numerical results of the problem are computed using the Lobatto-IIIa formula-based finite difference bvp4c scheme. The numerical results are verified by comparing them to the findings of an earlier study, and the results are discovered to be in good agreement. The graphical illustrations depict significant alterations in the temperature and concentration plots with stratification parameters. The findings showed that the mass transfer is greatly increased by the solutal stratification’s ( ϵ 2 ) supremacy over the thermal stratification ( ϵ 1 ). In conjunction with the obliqueness parameter ( γ ), the skin friction coefficient is lowered.
doi_str_mv 10.1140/epjp/s13360-023-04465-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919537511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919537511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8cd07b37dbb3d4fa2875b2e841ba1420a2e6be654a60c8a549c222d44f0bc393</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhosoOIzzDAZcx8nlpJeljFcQ3Mw-pGnS6VCTmrSKL-Bzm5kKujOL5BD-74fzZdklJdeUAlmbYT-sI-U8J5gwjglALrA4yRaMVgQLADj9M59nqxj3JB2oKFSwyL5uJ9WjOAY1drbT6fYOKdcgHXyMuOmsneLhz1hr9BhRGsedQc477MO48613xwLVuhkefOdGZHv_gbxFCjnlvO2nrkH-3YTUjXzUXd-ntGtRnIJV2lxkZ1b10ax-3mW2vb_bbh7x88vD0-bmGWvOYcSlbkhR86Kpa96AVawsRM1MCbRWFBhRzOS1yQWonOhSCag0Y6wBsKTWvOLL7GquHYJ_m0wc5d5PIS0QJatoJXghKE2pYk4dHQRj5RC6VxU-JSXyoF0etMtZu0za5VG7FIksZzImwrUm_Pb_h34DV-eMQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919537511</pqid></control><display><type>article</type><title>Dual stratification and cross-diffusion effects on the non-orthogonal stagnation point flow of a nanofluid over an oscillating surface</title><source>Springer Nature</source><creator>Dhiman, Samriti ; Sharma, Tanya ; Singh, Kuldeep ; Nisar, Kottakkaran S. ; Kumar, Rakesh ; Raju, C. S. K.</creator><creatorcontrib>Dhiman, Samriti ; Sharma, Tanya ; Singh, Kuldeep ; Nisar, Kottakkaran S. ; Kumar, Rakesh ; Raju, C. S. K.</creatorcontrib><description>In the fields of hydrology, environmental engineering and thermal energy storage systems, the large temperature and concentration gradients lead to simultaneous diffusion and stratification phenomena. The non-orthogonal stagnation flows are significant due to their applications in many hydrodynamical processes for emergency shutdown cooling and energy harvesting. Therefore, the present study introduces the novel concept of thermal and solutal stratifications in a nanofluid’s non-orthogonal stagnation point flow. In the concentration and energy balance equations, the diffusive heats resulting from simultaneous mass and heat transport are also taken into account. The surface of stagnation is assumed to be oscillating and stretching linearly. The mathematical model developed under these assumptions is made dimension-free using appropriate variables. The numerical results of the problem are computed using the Lobatto-IIIa formula-based finite difference bvp4c scheme. The numerical results are verified by comparing them to the findings of an earlier study, and the results are discovered to be in good agreement. The graphical illustrations depict significant alterations in the temperature and concentration plots with stratification parameters. The findings showed that the mass transfer is greatly increased by the solutal stratification’s ( ϵ 2 ) supremacy over the thermal stratification ( ϵ 1 ). In conjunction with the obliqueness parameter ( γ ), the skin friction coefficient is lowered.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-04465-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Coefficient of friction ; Complex Systems ; Concentration gradient ; Condensed Matter Physics ; Diffusion ; Energy balance ; Energy harvesting ; Energy storage ; Environmental engineering ; Heat exchangers ; Heat transfer ; Heat transport ; High temperature ; Hydrology ; Magnetic fields ; Mass transfer ; Mathematical and Computational Physics ; Molecular ; Nanofluids ; Nanoparticles ; Non-Newtonian fluids ; Obliqueness ; Optical and Plasma Physics ; Parameters ; Physics ; Physics and Astronomy ; Regular Article ; Skin friction ; Stagnation flow ; Stagnation point ; Storage systems ; Theoretical ; Thermal energy ; Thermal stratification ; Velocity</subject><ispartof>European physical journal plus, 2023-09, Vol.138 (9), p.831, Article 831</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8cd07b37dbb3d4fa2875b2e841ba1420a2e6be654a60c8a549c222d44f0bc393</citedby><cites>FETCH-LOGICAL-c334t-8cd07b37dbb3d4fa2875b2e841ba1420a2e6be654a60c8a549c222d44f0bc393</cites><orcidid>0000-0001-5769-4320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dhiman, Samriti</creatorcontrib><creatorcontrib>Sharma, Tanya</creatorcontrib><creatorcontrib>Singh, Kuldeep</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S.</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Raju, C. S. K.</creatorcontrib><title>Dual stratification and cross-diffusion effects on the non-orthogonal stagnation point flow of a nanofluid over an oscillating surface</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In the fields of hydrology, environmental engineering and thermal energy storage systems, the large temperature and concentration gradients lead to simultaneous diffusion and stratification phenomena. The non-orthogonal stagnation flows are significant due to their applications in many hydrodynamical processes for emergency shutdown cooling and energy harvesting. Therefore, the present study introduces the novel concept of thermal and solutal stratifications in a nanofluid’s non-orthogonal stagnation point flow. In the concentration and energy balance equations, the diffusive heats resulting from simultaneous mass and heat transport are also taken into account. The surface of stagnation is assumed to be oscillating and stretching linearly. The mathematical model developed under these assumptions is made dimension-free using appropriate variables. The numerical results of the problem are computed using the Lobatto-IIIa formula-based finite difference bvp4c scheme. The numerical results are verified by comparing them to the findings of an earlier study, and the results are discovered to be in good agreement. The graphical illustrations depict significant alterations in the temperature and concentration plots with stratification parameters. The findings showed that the mass transfer is greatly increased by the solutal stratification’s ( ϵ 2 ) supremacy over the thermal stratification ( ϵ 1 ). In conjunction with the obliqueness parameter ( γ ), the skin friction coefficient is lowered.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Coefficient of friction</subject><subject>Complex Systems</subject><subject>Concentration gradient</subject><subject>Condensed Matter Physics</subject><subject>Diffusion</subject><subject>Energy balance</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Environmental engineering</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Heat transport</subject><subject>High temperature</subject><subject>Hydrology</subject><subject>Magnetic fields</subject><subject>Mass transfer</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Non-Newtonian fluids</subject><subject>Obliqueness</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Skin friction</subject><subject>Stagnation flow</subject><subject>Stagnation point</subject><subject>Storage systems</subject><subject>Theoretical</subject><subject>Thermal energy</subject><subject>Thermal stratification</subject><subject>Velocity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhosoOIzzDAZcx8nlpJeljFcQ3Mw-pGnS6VCTmrSKL-Bzm5kKujOL5BD-74fzZdklJdeUAlmbYT-sI-U8J5gwjglALrA4yRaMVgQLADj9M59nqxj3JB2oKFSwyL5uJ9WjOAY1drbT6fYOKdcgHXyMuOmsneLhz1hr9BhRGsedQc477MO48613xwLVuhkefOdGZHv_gbxFCjnlvO2nrkH-3YTUjXzUXd-ntGtRnIJV2lxkZ1b10ax-3mW2vb_bbh7x88vD0-bmGWvOYcSlbkhR86Kpa96AVawsRM1MCbRWFBhRzOS1yQWonOhSCag0Y6wBsKTWvOLL7GquHYJ_m0wc5d5PIS0QJatoJXghKE2pYk4dHQRj5RC6VxU-JSXyoF0etMtZu0za5VG7FIksZzImwrUm_Pb_h34DV-eMQw</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Dhiman, Samriti</creator><creator>Sharma, Tanya</creator><creator>Singh, Kuldeep</creator><creator>Nisar, Kottakkaran S.</creator><creator>Kumar, Rakesh</creator><creator>Raju, C. S. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></search><sort><creationdate>20230922</creationdate><title>Dual stratification and cross-diffusion effects on the non-orthogonal stagnation point flow of a nanofluid over an oscillating surface</title><author>Dhiman, Samriti ; Sharma, Tanya ; Singh, Kuldeep ; Nisar, Kottakkaran S. ; Kumar, Rakesh ; Raju, C. S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8cd07b37dbb3d4fa2875b2e841ba1420a2e6be654a60c8a549c222d44f0bc393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Coefficient of friction</topic><topic>Complex Systems</topic><topic>Concentration gradient</topic><topic>Condensed Matter Physics</topic><topic>Diffusion</topic><topic>Energy balance</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Environmental engineering</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Heat transport</topic><topic>High temperature</topic><topic>Hydrology</topic><topic>Magnetic fields</topic><topic>Mass transfer</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Non-Newtonian fluids</topic><topic>Obliqueness</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Skin friction</topic><topic>Stagnation flow</topic><topic>Stagnation point</topic><topic>Storage systems</topic><topic>Theoretical</topic><topic>Thermal energy</topic><topic>Thermal stratification</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhiman, Samriti</creatorcontrib><creatorcontrib>Sharma, Tanya</creatorcontrib><creatorcontrib>Singh, Kuldeep</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S.</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Raju, C. S. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhiman, Samriti</au><au>Sharma, Tanya</au><au>Singh, Kuldeep</au><au>Nisar, Kottakkaran S.</au><au>Kumar, Rakesh</au><au>Raju, C. S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual stratification and cross-diffusion effects on the non-orthogonal stagnation point flow of a nanofluid over an oscillating surface</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-09-22</date><risdate>2023</risdate><volume>138</volume><issue>9</issue><spage>831</spage><pages>831-</pages><artnum>831</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In the fields of hydrology, environmental engineering and thermal energy storage systems, the large temperature and concentration gradients lead to simultaneous diffusion and stratification phenomena. The non-orthogonal stagnation flows are significant due to their applications in many hydrodynamical processes for emergency shutdown cooling and energy harvesting. Therefore, the present study introduces the novel concept of thermal and solutal stratifications in a nanofluid’s non-orthogonal stagnation point flow. In the concentration and energy balance equations, the diffusive heats resulting from simultaneous mass and heat transport are also taken into account. The surface of stagnation is assumed to be oscillating and stretching linearly. The mathematical model developed under these assumptions is made dimension-free using appropriate variables. The numerical results of the problem are computed using the Lobatto-IIIa formula-based finite difference bvp4c scheme. The numerical results are verified by comparing them to the findings of an earlier study, and the results are discovered to be in good agreement. The graphical illustrations depict significant alterations in the temperature and concentration plots with stratification parameters. The findings showed that the mass transfer is greatly increased by the solutal stratification’s ( ϵ 2 ) supremacy over the thermal stratification ( ϵ 1 ). In conjunction with the obliqueness parameter ( γ ), the skin friction coefficient is lowered.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-04465-5</doi><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2023-09, Vol.138 (9), p.831, Article 831
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919537511
source Springer Nature
subjects Applied and Technical Physics
Atomic
Coefficient of friction
Complex Systems
Concentration gradient
Condensed Matter Physics
Diffusion
Energy balance
Energy harvesting
Energy storage
Environmental engineering
Heat exchangers
Heat transfer
Heat transport
High temperature
Hydrology
Magnetic fields
Mass transfer
Mathematical and Computational Physics
Molecular
Nanofluids
Nanoparticles
Non-Newtonian fluids
Obliqueness
Optical and Plasma Physics
Parameters
Physics
Physics and Astronomy
Regular Article
Skin friction
Stagnation flow
Stagnation point
Storage systems
Theoretical
Thermal energy
Thermal stratification
Velocity
title Dual stratification and cross-diffusion effects on the non-orthogonal stagnation point flow of a nanofluid over an oscillating surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20stratification%20and%20cross-diffusion%20effects%20on%20the%20non-orthogonal%20stagnation%20point%20flow%20of%20a%20nanofluid%20over%20an%20oscillating%20surface&rft.jtitle=European%20physical%20journal%20plus&rft.au=Dhiman,%20Samriti&rft.date=2023-09-22&rft.volume=138&rft.issue=9&rft.spage=831&rft.pages=831-&rft.artnum=831&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-04465-5&rft_dat=%3Cproquest_cross%3E2919537511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-8cd07b37dbb3d4fa2875b2e841ba1420a2e6be654a60c8a549c222d44f0bc393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919537511&rft_id=info:pmid/&rfr_iscdi=true