Loading…

Dynamic behaviour of microtubules around the critical temperature and effect of the electric field produced by these vibrations on its environment

In this paper, we study the microtubule as a ferroelectric system. The behaviour of microtubules around the critical temperature was evaluated, and the effect of the electric field produced by the microtubules on its environment was determined. Also, the mean-field theory approximation (MFTA) was us...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2021-10, Vol.136 (10), p.1003, Article 1003
Main Authors: Nganfo, W. A., Kenfack-Sadem, C., Ekosso, M. C., Wopunghwo, S. N., Fotué, A. J., Fai, L. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c264t-9ebf149c9097ef030ad93e62274d5fa66f93aa6b918ed8f9551e481c24156ae33
cites cdi_FETCH-LOGICAL-c264t-9ebf149c9097ef030ad93e62274d5fa66f93aa6b918ed8f9551e481c24156ae33
container_end_page
container_issue 10
container_start_page 1003
container_title European physical journal plus
container_volume 136
creator Nganfo, W. A.
Kenfack-Sadem, C.
Ekosso, M. C.
Wopunghwo, S. N.
Fotué, A. J.
Fai, L. C.
description In this paper, we study the microtubule as a ferroelectric system. The behaviour of microtubules around the critical temperature was evaluated, and the effect of the electric field produced by the microtubules on its environment was determined. Also, the mean-field theory approximation (MFTA) was used to evaluate the total polarization and free energy around the critical temperature. These parameters are evaluated according to the physiological and critical temperatures in the absence and the presence of the electric field produced by the vibrations of the microtubule network. Results show that the microtubule (MT) has a spontaneous polarization in the absence of an electric field which collapses above the critical temperature. Moreover, the transition from ferroelectric to paraelectric state occurs with increasing physiological temperature. The microtubule stability is observed at the minimal free energy. The free energy is higher in the paraelectric state than in the ferroelectric state and changes its behaviour at high temperatures. The electric field stabilizes and orients the microtubule in the direction of the field. The microtubule produces electric fields that strongly interact with its biological environment at a short distance while long-distance interactions are weak.
doi_str_mv 10.1140/epjp/s13360-021-02001-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919537648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919537648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-9ebf149c9097ef030ad93e62274d5fa66f93aa6b918ed8f9551e481c24156ae33</originalsourceid><addsrcrecordid>eNqFkc9OxCAQxhujiZt1n0ESz1UolJajWf8mm3jRM6Ht4LJpaQW62X0Nn1hqTfQmCWFgvt_A8CXJJcHXhDB8A8NuuPGEUo5TnJE4MSbp4SRZZETgNGeMnf6Jz5OV9zscBxOECbZIPu-OVnWmRhVs1d70o0O9RvHA9WGsxhY8Uq4fbYPCFlDtTDC1alGAbgCnwugAqZgEraEOEzrJoI0bF4tqA22DBtc3Yw0Nqo5T2gPamyrCprce9RaZ4BHYvXG97cCGi-RMq9bD6mddJm8P96_rp3Tz8vi8vt2kdcZZSAVUOvZQCywK0Jhi1QgKPMsK1uRaca4FVYpXgpTQlFrkOQFWkjpjJOcKKF0mV3Pd-L6PEXyQu9i-jVfKTBCR04KzMqqKWRV_xHsHWg7OdModJcFy8kBOHsjZAxk9kN8eyEMky5n0kbDv4H7r_4d-AeWZkX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919537648</pqid></control><display><type>article</type><title>Dynamic behaviour of microtubules around the critical temperature and effect of the electric field produced by these vibrations on its environment</title><source>Springer Nature</source><creator>Nganfo, W. A. ; Kenfack-Sadem, C. ; Ekosso, M. C. ; Wopunghwo, S. N. ; Fotué, A. J. ; Fai, L. C.</creator><creatorcontrib>Nganfo, W. A. ; Kenfack-Sadem, C. ; Ekosso, M. C. ; Wopunghwo, S. N. ; Fotué, A. J. ; Fai, L. C.</creatorcontrib><description>In this paper, we study the microtubule as a ferroelectric system. The behaviour of microtubules around the critical temperature was evaluated, and the effect of the electric field produced by the microtubules on its environment was determined. Also, the mean-field theory approximation (MFTA) was used to evaluate the total polarization and free energy around the critical temperature. These parameters are evaluated according to the physiological and critical temperatures in the absence and the presence of the electric field produced by the vibrations of the microtubule network. Results show that the microtubule (MT) has a spontaneous polarization in the absence of an electric field which collapses above the critical temperature. Moreover, the transition from ferroelectric to paraelectric state occurs with increasing physiological temperature. The microtubule stability is observed at the minimal free energy. The free energy is higher in the paraelectric state than in the ferroelectric state and changes its behaviour at high temperatures. The electric field stabilizes and orients the microtubule in the direction of the field. The microtubule produces electric fields that strongly interact with its biological environment at a short distance while long-distance interactions are weak.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-02001-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Approximation ; Atomic ; Cell division ; Complex Systems ; Condensed Matter Physics ; Critical temperature ; Cytoskeleton ; Electric fields ; Ferroelectric materials ; Ferroelectricity ; Free energy ; High temperature ; Mathematical and Computational Physics ; Mean field theory ; Molecular ; Optical and Plasma Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Physiology ; Polarization ; Polymerization ; Review ; Temperature ; Theoretical ; Transition temperature</subject><ispartof>European physical journal plus, 2021-10, Vol.136 (10), p.1003, Article 1003</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-9ebf149c9097ef030ad93e62274d5fa66f93aa6b918ed8f9551e481c24156ae33</citedby><cites>FETCH-LOGICAL-c264t-9ebf149c9097ef030ad93e62274d5fa66f93aa6b918ed8f9551e481c24156ae33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nganfo, W. A.</creatorcontrib><creatorcontrib>Kenfack-Sadem, C.</creatorcontrib><creatorcontrib>Ekosso, M. C.</creatorcontrib><creatorcontrib>Wopunghwo, S. N.</creatorcontrib><creatorcontrib>Fotué, A. J.</creatorcontrib><creatorcontrib>Fai, L. C.</creatorcontrib><title>Dynamic behaviour of microtubules around the critical temperature and effect of the electric field produced by these vibrations on its environment</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this paper, we study the microtubule as a ferroelectric system. The behaviour of microtubules around the critical temperature was evaluated, and the effect of the electric field produced by the microtubules on its environment was determined. Also, the mean-field theory approximation (MFTA) was used to evaluate the total polarization and free energy around the critical temperature. These parameters are evaluated according to the physiological and critical temperatures in the absence and the presence of the electric field produced by the vibrations of the microtubule network. Results show that the microtubule (MT) has a spontaneous polarization in the absence of an electric field which collapses above the critical temperature. Moreover, the transition from ferroelectric to paraelectric state occurs with increasing physiological temperature. The microtubule stability is observed at the minimal free energy. The free energy is higher in the paraelectric state than in the ferroelectric state and changes its behaviour at high temperatures. The electric field stabilizes and orients the microtubule in the direction of the field. The microtubule produces electric fields that strongly interact with its biological environment at a short distance while long-distance interactions are weak.</description><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Cell division</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Critical temperature</subject><subject>Cytoskeleton</subject><subject>Electric fields</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Free energy</subject><subject>High temperature</subject><subject>Mathematical and Computational Physics</subject><subject>Mean field theory</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physiology</subject><subject>Polarization</subject><subject>Polymerization</subject><subject>Review</subject><subject>Temperature</subject><subject>Theoretical</subject><subject>Transition temperature</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc9OxCAQxhujiZt1n0ESz1UolJajWf8mm3jRM6Ht4LJpaQW62X0Nn1hqTfQmCWFgvt_A8CXJJcHXhDB8A8NuuPGEUo5TnJE4MSbp4SRZZETgNGeMnf6Jz5OV9zscBxOECbZIPu-OVnWmRhVs1d70o0O9RvHA9WGsxhY8Uq4fbYPCFlDtTDC1alGAbgCnwugAqZgEraEOEzrJoI0bF4tqA22DBtc3Yw0Nqo5T2gPamyrCprce9RaZ4BHYvXG97cCGi-RMq9bD6mddJm8P96_rp3Tz8vi8vt2kdcZZSAVUOvZQCywK0Jhi1QgKPMsK1uRaca4FVYpXgpTQlFrkOQFWkjpjJOcKKF0mV3Pd-L6PEXyQu9i-jVfKTBCR04KzMqqKWRV_xHsHWg7OdModJcFy8kBOHsjZAxk9kN8eyEMky5n0kbDv4H7r_4d-AeWZkX4</recordid><startdate>20211005</startdate><enddate>20211005</enddate><creator>Nganfo, W. A.</creator><creator>Kenfack-Sadem, C.</creator><creator>Ekosso, M. C.</creator><creator>Wopunghwo, S. N.</creator><creator>Fotué, A. J.</creator><creator>Fai, L. C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20211005</creationdate><title>Dynamic behaviour of microtubules around the critical temperature and effect of the electric field produced by these vibrations on its environment</title><author>Nganfo, W. A. ; Kenfack-Sadem, C. ; Ekosso, M. C. ; Wopunghwo, S. N. ; Fotué, A. J. ; Fai, L. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-9ebf149c9097ef030ad93e62274d5fa66f93aa6b918ed8f9551e481c24156ae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Cell division</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Critical temperature</topic><topic>Cytoskeleton</topic><topic>Electric fields</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Free energy</topic><topic>High temperature</topic><topic>Mathematical and Computational Physics</topic><topic>Mean field theory</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physiology</topic><topic>Polarization</topic><topic>Polymerization</topic><topic>Review</topic><topic>Temperature</topic><topic>Theoretical</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nganfo, W. A.</creatorcontrib><creatorcontrib>Kenfack-Sadem, C.</creatorcontrib><creatorcontrib>Ekosso, M. C.</creatorcontrib><creatorcontrib>Wopunghwo, S. N.</creatorcontrib><creatorcontrib>Fotué, A. J.</creatorcontrib><creatorcontrib>Fai, L. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nganfo, W. A.</au><au>Kenfack-Sadem, C.</au><au>Ekosso, M. C.</au><au>Wopunghwo, S. N.</au><au>Fotué, A. J.</au><au>Fai, L. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic behaviour of microtubules around the critical temperature and effect of the electric field produced by these vibrations on its environment</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-10-05</date><risdate>2021</risdate><volume>136</volume><issue>10</issue><spage>1003</spage><pages>1003-</pages><artnum>1003</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this paper, we study the microtubule as a ferroelectric system. The behaviour of microtubules around the critical temperature was evaluated, and the effect of the electric field produced by the microtubules on its environment was determined. Also, the mean-field theory approximation (MFTA) was used to evaluate the total polarization and free energy around the critical temperature. These parameters are evaluated according to the physiological and critical temperatures in the absence and the presence of the electric field produced by the vibrations of the microtubule network. Results show that the microtubule (MT) has a spontaneous polarization in the absence of an electric field which collapses above the critical temperature. Moreover, the transition from ferroelectric to paraelectric state occurs with increasing physiological temperature. The microtubule stability is observed at the minimal free energy. The free energy is higher in the paraelectric state than in the ferroelectric state and changes its behaviour at high temperatures. The electric field stabilizes and orients the microtubule in the direction of the field. The microtubule produces electric fields that strongly interact with its biological environment at a short distance while long-distance interactions are weak.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-02001-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2021-10, Vol.136 (10), p.1003, Article 1003
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919537648
source Springer Nature
subjects Applied and Technical Physics
Approximation
Atomic
Cell division
Complex Systems
Condensed Matter Physics
Critical temperature
Cytoskeleton
Electric fields
Ferroelectric materials
Ferroelectricity
Free energy
High temperature
Mathematical and Computational Physics
Mean field theory
Molecular
Optical and Plasma Physics
Phase transitions
Physics
Physics and Astronomy
Physiology
Polarization
Polymerization
Review
Temperature
Theoretical
Transition temperature
title Dynamic behaviour of microtubules around the critical temperature and effect of the electric field produced by these vibrations on its environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20behaviour%20of%20microtubules%20around%20the%20critical%20temperature%20and%20effect%20of%20the%20electric%20field%20produced%20by%20these%20vibrations%20on%20its%20environment&rft.jtitle=European%20physical%20journal%20plus&rft.au=Nganfo,%20W.%20A.&rft.date=2021-10-05&rft.volume=136&rft.issue=10&rft.spage=1003&rft.pages=1003-&rft.artnum=1003&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-02001-x&rft_dat=%3Cproquest_cross%3E2919537648%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-9ebf149c9097ef030ad93e62274d5fa66f93aa6b918ed8f9551e481c24156ae33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919537648&rft_id=info:pmid/&rfr_iscdi=true