Loading…
UCred: fusion of machine learning and deep learning methods for user credibility on social media
Online Social Network (OSN) is one of the biggest platforms that spread real and fake news. Many OSN users spread malicious data, fake news, and hoaxes using fake or social bot account for business, political and entertainment purposes. These accounts are also used to spread malicious URLs, viruses...
Saved in:
Published in: | Social network analysis and mining 2022-12, Vol.12 (1), p.54, Article 54 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3 |
container_end_page | |
container_issue | 1 |
container_start_page | 54 |
container_title | Social network analysis and mining |
container_volume | 12 |
creator | Verma, Pawan Kumar Agrawal, Prateek Madaan, Vishu Gupta, Charu |
description | Online Social Network (OSN) is one of the biggest platforms that spread real and fake news. Many OSN users spread malicious data, fake news, and hoaxes using fake or social bot account for business, political and entertainment purposes. These accounts are also used to spread malicious URLs, viruses and malware. This paper proposes UCred (User Credibility) model to classify user accounts as fake or real. This model uses the combined results of RoBERT (Robustly optimized BERT), Bi-LSTM (Bidirectional LSTM) and RF (Random Forest) for the classification of profile. The output generated from all three techniques is fed into the voting classifier to improve the classification accuracy compared to state-of-the-art approaches. The proposed UCred model gives 98.96% accuracy, notably higher than the state-of-the-art model. |
doi_str_mv | 10.1007/s13278-022-00880-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919538414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919538414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxDowfiSx2aGKl1SJDV0bJ7ZbV2lc7GTRv8cQRHesxhqfe0a6CF0TuCUA9V0ijNaiAEoLACGgIGdoRkQli5JX8vzvXcIlWqS0AwACjEmoZuhjvYzW3GM3Jh96HBze63bre4s7q2Pv-w3WvcHG2sNps7fDNpiEXYh4TDbiNjt84zs_HHG2pNB63WXMeH2FLpzukl38zjlaPz2-L1-K1dvz6_JhVbSUy6EQIDnwkjgNTDTGcd2KsgJGakbLhnFeWwmNq2klRE2kENJS4Pm_rQ2lzrA5upm8hxg-R5sGtQtj7PNJRSWRJROc8EzRiWpjSClapw7R73U8KgLqu0w1lalymeqnTEVyiE2hlOF-Y-NJ_U_qCxGHdZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919538414</pqid></control><display><type>article</type><title>UCred: fusion of machine learning and deep learning methods for user credibility on social media</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Social Science Premium Collection</source><source>Springer Link</source><creator>Verma, Pawan Kumar ; Agrawal, Prateek ; Madaan, Vishu ; Gupta, Charu</creator><creatorcontrib>Verma, Pawan Kumar ; Agrawal, Prateek ; Madaan, Vishu ; Gupta, Charu</creatorcontrib><description>Online Social Network (OSN) is one of the biggest platforms that spread real and fake news. Many OSN users spread malicious data, fake news, and hoaxes using fake or social bot account for business, political and entertainment purposes. These accounts are also used to spread malicious URLs, viruses and malware. This paper proposes UCred (User Credibility) model to classify user accounts as fake or real. This model uses the combined results of RoBERT (Robustly optimized BERT), Bi-LSTM (Bidirectional LSTM) and RF (Random Forest) for the classification of profile. The output generated from all three techniques is fed into the voting classifier to improve the classification accuracy compared to state-of-the-art approaches. The proposed UCred model gives 98.96% accuracy, notably higher than the state-of-the-art model.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-022-00880-1</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Accuracy ; Applications of Graph Theory and Complex Networks ; Automation ; Bidirectionality ; Classification ; Cloning ; Computer Science ; Computer viruses ; Credibility ; Data Mining and Knowledge Discovery ; Datasets ; Deep learning ; Economics ; Entertainment ; Game Theory ; Hoaxes ; Humanities ; Law ; Machine learning ; Methodology of the Social Sciences ; Neural networks ; News ; Original Article ; Propagation ; Social and Behav. Sciences ; Social media ; Social networks ; Statistics for Social Sciences ; Support vector machines ; User profiles</subject><ispartof>Social network analysis and mining, 2022-12, Vol.12 (1), p.54, Article 54</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3</citedby><cites>FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3</cites><orcidid>0000-0001-6861-0698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2919538414?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,12847,21394,27924,27925,33223,33611,43733</link.rule.ids></links><search><creatorcontrib>Verma, Pawan Kumar</creatorcontrib><creatorcontrib>Agrawal, Prateek</creatorcontrib><creatorcontrib>Madaan, Vishu</creatorcontrib><creatorcontrib>Gupta, Charu</creatorcontrib><title>UCred: fusion of machine learning and deep learning methods for user credibility on social media</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><description>Online Social Network (OSN) is one of the biggest platforms that spread real and fake news. Many OSN users spread malicious data, fake news, and hoaxes using fake or social bot account for business, political and entertainment purposes. These accounts are also used to spread malicious URLs, viruses and malware. This paper proposes UCred (User Credibility) model to classify user accounts as fake or real. This model uses the combined results of RoBERT (Robustly optimized BERT), Bi-LSTM (Bidirectional LSTM) and RF (Random Forest) for the classification of profile. The output generated from all three techniques is fed into the voting classifier to improve the classification accuracy compared to state-of-the-art approaches. The proposed UCred model gives 98.96% accuracy, notably higher than the state-of-the-art model.</description><subject>Accuracy</subject><subject>Applications of Graph Theory and Complex Networks</subject><subject>Automation</subject><subject>Bidirectionality</subject><subject>Classification</subject><subject>Cloning</subject><subject>Computer Science</subject><subject>Computer viruses</subject><subject>Credibility</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Economics</subject><subject>Entertainment</subject><subject>Game Theory</subject><subject>Hoaxes</subject><subject>Humanities</subject><subject>Law</subject><subject>Machine learning</subject><subject>Methodology of the Social Sciences</subject><subject>Neural networks</subject><subject>News</subject><subject>Original Article</subject><subject>Propagation</subject><subject>Social and Behav. Sciences</subject><subject>Social media</subject><subject>Social networks</subject><subject>Statistics for Social Sciences</subject><subject>Support vector machines</subject><subject>User profiles</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><recordid>eNp9kMtOwzAQRS0EElXpD7CyxDowfiSx2aGKl1SJDV0bJ7ZbV2lc7GTRv8cQRHesxhqfe0a6CF0TuCUA9V0ijNaiAEoLACGgIGdoRkQli5JX8vzvXcIlWqS0AwACjEmoZuhjvYzW3GM3Jh96HBze63bre4s7q2Pv-w3WvcHG2sNps7fDNpiEXYh4TDbiNjt84zs_HHG2pNB63WXMeH2FLpzukl38zjlaPz2-L1-K1dvz6_JhVbSUy6EQIDnwkjgNTDTGcd2KsgJGakbLhnFeWwmNq2klRE2kENJS4Pm_rQ2lzrA5upm8hxg-R5sGtQtj7PNJRSWRJROc8EzRiWpjSClapw7R73U8KgLqu0w1lalymeqnTEVyiE2hlOF-Y-NJ_U_qCxGHdZE</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Verma, Pawan Kumar</creator><creator>Agrawal, Prateek</creator><creator>Madaan, Vishu</creator><creator>Gupta, Charu</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6861-0698</orcidid></search><sort><creationdate>20221201</creationdate><title>UCred: fusion of machine learning and deep learning methods for user credibility on social media</title><author>Verma, Pawan Kumar ; Agrawal, Prateek ; Madaan, Vishu ; Gupta, Charu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Applications of Graph Theory and Complex Networks</topic><topic>Automation</topic><topic>Bidirectionality</topic><topic>Classification</topic><topic>Cloning</topic><topic>Computer Science</topic><topic>Computer viruses</topic><topic>Credibility</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Economics</topic><topic>Entertainment</topic><topic>Game Theory</topic><topic>Hoaxes</topic><topic>Humanities</topic><topic>Law</topic><topic>Machine learning</topic><topic>Methodology of the Social Sciences</topic><topic>Neural networks</topic><topic>News</topic><topic>Original Article</topic><topic>Propagation</topic><topic>Social and Behav. Sciences</topic><topic>Social media</topic><topic>Social networks</topic><topic>Statistics for Social Sciences</topic><topic>Support vector machines</topic><topic>User profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Pawan Kumar</creatorcontrib><creatorcontrib>Agrawal, Prateek</creatorcontrib><creatorcontrib>Madaan, Vishu</creatorcontrib><creatorcontrib>Gupta, Charu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Pawan Kumar</au><au>Agrawal, Prateek</au><au>Madaan, Vishu</au><au>Gupta, Charu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UCred: fusion of machine learning and deep learning methods for user credibility on social media</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>54</spage><pages>54-</pages><artnum>54</artnum><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>Online Social Network (OSN) is one of the biggest platforms that spread real and fake news. Many OSN users spread malicious data, fake news, and hoaxes using fake or social bot account for business, political and entertainment purposes. These accounts are also used to spread malicious URLs, viruses and malware. This paper proposes UCred (User Credibility) model to classify user accounts as fake or real. This model uses the combined results of RoBERT (Robustly optimized BERT), Bi-LSTM (Bidirectional LSTM) and RF (Random Forest) for the classification of profile. The output generated from all three techniques is fed into the voting classifier to improve the classification accuracy compared to state-of-the-art approaches. The proposed UCred model gives 98.96% accuracy, notably higher than the state-of-the-art model.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13278-022-00880-1</doi><orcidid>https://orcid.org/0000-0001-6861-0698</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-5450 |
ispartof | Social network analysis and mining, 2022-12, Vol.12 (1), p.54, Article 54 |
issn | 1869-5450 1869-5469 |
language | eng |
recordid | cdi_proquest_journals_2919538414 |
source | International Bibliography of the Social Sciences (IBSS); Social Science Premium Collection; Springer Link |
subjects | Accuracy Applications of Graph Theory and Complex Networks Automation Bidirectionality Classification Cloning Computer Science Computer viruses Credibility Data Mining and Knowledge Discovery Datasets Deep learning Economics Entertainment Game Theory Hoaxes Humanities Law Machine learning Methodology of the Social Sciences Neural networks News Original Article Propagation Social and Behav. Sciences Social media Social networks Statistics for Social Sciences Support vector machines User profiles |
title | UCred: fusion of machine learning and deep learning methods for user credibility on social media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UCred:%20fusion%20of%20machine%20learning%20and%20deep%20learning%20methods%20for%20user%20credibility%20on%20social%20media&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Verma,%20Pawan%20Kumar&rft.date=2022-12-01&rft.volume=12&rft.issue=1&rft.spage=54&rft.pages=54-&rft.artnum=54&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-022-00880-1&rft_dat=%3Cproquest_cross%3E2919538414%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919538414&rft_id=info:pmid/&rfr_iscdi=true |