Loading…

UCred: fusion of machine learning and deep learning methods for user credibility on social media

Online Social Network (OSN) is one of the biggest platforms that spread real and fake news. Many OSN users spread malicious data, fake news, and hoaxes using fake or social bot account for business, political and entertainment purposes. These accounts are also used to spread malicious URLs, viruses...

Full description

Saved in:
Bibliographic Details
Published in:Social network analysis and mining 2022-12, Vol.12 (1), p.54, Article 54
Main Authors: Verma, Pawan Kumar, Agrawal, Prateek, Madaan, Vishu, Gupta, Charu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3
cites cdi_FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3
container_end_page
container_issue 1
container_start_page 54
container_title Social network analysis and mining
container_volume 12
creator Verma, Pawan Kumar
Agrawal, Prateek
Madaan, Vishu
Gupta, Charu
description Online Social Network (OSN) is one of the biggest platforms that spread real and fake news. Many OSN users spread malicious data, fake news, and hoaxes using fake or social bot account for business, political and entertainment purposes. These accounts are also used to spread malicious URLs, viruses and malware. This paper proposes UCred (User Credibility) model to classify user accounts as fake or real. This model uses the combined results of RoBERT (Robustly optimized BERT), Bi-LSTM (Bidirectional LSTM) and RF (Random Forest) for the classification of profile. The output generated from all three techniques is fed into the voting classifier to improve the classification accuracy compared to state-of-the-art approaches. The proposed UCred model gives 98.96% accuracy, notably higher than the state-of-the-art model.
doi_str_mv 10.1007/s13278-022-00880-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919538414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919538414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxDowfiSx2aGKl1SJDV0bJ7ZbV2lc7GTRv8cQRHesxhqfe0a6CF0TuCUA9V0ijNaiAEoLACGgIGdoRkQli5JX8vzvXcIlWqS0AwACjEmoZuhjvYzW3GM3Jh96HBze63bre4s7q2Pv-w3WvcHG2sNps7fDNpiEXYh4TDbiNjt84zs_HHG2pNB63WXMeH2FLpzukl38zjlaPz2-L1-K1dvz6_JhVbSUy6EQIDnwkjgNTDTGcd2KsgJGakbLhnFeWwmNq2klRE2kENJS4Pm_rQ2lzrA5upm8hxg-R5sGtQtj7PNJRSWRJROc8EzRiWpjSClapw7R73U8KgLqu0w1lalymeqnTEVyiE2hlOF-Y-NJ_U_qCxGHdZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919538414</pqid></control><display><type>article</type><title>UCred: fusion of machine learning and deep learning methods for user credibility on social media</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Social Science Premium Collection</source><source>Springer Link</source><creator>Verma, Pawan Kumar ; Agrawal, Prateek ; Madaan, Vishu ; Gupta, Charu</creator><creatorcontrib>Verma, Pawan Kumar ; Agrawal, Prateek ; Madaan, Vishu ; Gupta, Charu</creatorcontrib><description>Online Social Network (OSN) is one of the biggest platforms that spread real and fake news. Many OSN users spread malicious data, fake news, and hoaxes using fake or social bot account for business, political and entertainment purposes. These accounts are also used to spread malicious URLs, viruses and malware. This paper proposes UCred (User Credibility) model to classify user accounts as fake or real. This model uses the combined results of RoBERT (Robustly optimized BERT), Bi-LSTM (Bidirectional LSTM) and RF (Random Forest) for the classification of profile. The output generated from all three techniques is fed into the voting classifier to improve the classification accuracy compared to state-of-the-art approaches. The proposed UCred model gives 98.96% accuracy, notably higher than the state-of-the-art model.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-022-00880-1</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Accuracy ; Applications of Graph Theory and Complex Networks ; Automation ; Bidirectionality ; Classification ; Cloning ; Computer Science ; Computer viruses ; Credibility ; Data Mining and Knowledge Discovery ; Datasets ; Deep learning ; Economics ; Entertainment ; Game Theory ; Hoaxes ; Humanities ; Law ; Machine learning ; Methodology of the Social Sciences ; Neural networks ; News ; Original Article ; Propagation ; Social and Behav. Sciences ; Social media ; Social networks ; Statistics for Social Sciences ; Support vector machines ; User profiles</subject><ispartof>Social network analysis and mining, 2022-12, Vol.12 (1), p.54, Article 54</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3</citedby><cites>FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3</cites><orcidid>0000-0001-6861-0698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2919538414?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,12847,21394,27924,27925,33223,33611,43733</link.rule.ids></links><search><creatorcontrib>Verma, Pawan Kumar</creatorcontrib><creatorcontrib>Agrawal, Prateek</creatorcontrib><creatorcontrib>Madaan, Vishu</creatorcontrib><creatorcontrib>Gupta, Charu</creatorcontrib><title>UCred: fusion of machine learning and deep learning methods for user credibility on social media</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><description>Online Social Network (OSN) is one of the biggest platforms that spread real and fake news. Many OSN users spread malicious data, fake news, and hoaxes using fake or social bot account for business, political and entertainment purposes. These accounts are also used to spread malicious URLs, viruses and malware. This paper proposes UCred (User Credibility) model to classify user accounts as fake or real. This model uses the combined results of RoBERT (Robustly optimized BERT), Bi-LSTM (Bidirectional LSTM) and RF (Random Forest) for the classification of profile. The output generated from all three techniques is fed into the voting classifier to improve the classification accuracy compared to state-of-the-art approaches. The proposed UCred model gives 98.96% accuracy, notably higher than the state-of-the-art model.</description><subject>Accuracy</subject><subject>Applications of Graph Theory and Complex Networks</subject><subject>Automation</subject><subject>Bidirectionality</subject><subject>Classification</subject><subject>Cloning</subject><subject>Computer Science</subject><subject>Computer viruses</subject><subject>Credibility</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Economics</subject><subject>Entertainment</subject><subject>Game Theory</subject><subject>Hoaxes</subject><subject>Humanities</subject><subject>Law</subject><subject>Machine learning</subject><subject>Methodology of the Social Sciences</subject><subject>Neural networks</subject><subject>News</subject><subject>Original Article</subject><subject>Propagation</subject><subject>Social and Behav. Sciences</subject><subject>Social media</subject><subject>Social networks</subject><subject>Statistics for Social Sciences</subject><subject>Support vector machines</subject><subject>User profiles</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><recordid>eNp9kMtOwzAQRS0EElXpD7CyxDowfiSx2aGKl1SJDV0bJ7ZbV2lc7GTRv8cQRHesxhqfe0a6CF0TuCUA9V0ijNaiAEoLACGgIGdoRkQli5JX8vzvXcIlWqS0AwACjEmoZuhjvYzW3GM3Jh96HBze63bre4s7q2Pv-w3WvcHG2sNps7fDNpiEXYh4TDbiNjt84zs_HHG2pNB63WXMeH2FLpzukl38zjlaPz2-L1-K1dvz6_JhVbSUy6EQIDnwkjgNTDTGcd2KsgJGakbLhnFeWwmNq2klRE2kENJS4Pm_rQ2lzrA5upm8hxg-R5sGtQtj7PNJRSWRJROc8EzRiWpjSClapw7R73U8KgLqu0w1lalymeqnTEVyiE2hlOF-Y-NJ_U_qCxGHdZE</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Verma, Pawan Kumar</creator><creator>Agrawal, Prateek</creator><creator>Madaan, Vishu</creator><creator>Gupta, Charu</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6861-0698</orcidid></search><sort><creationdate>20221201</creationdate><title>UCred: fusion of machine learning and deep learning methods for user credibility on social media</title><author>Verma, Pawan Kumar ; Agrawal, Prateek ; Madaan, Vishu ; Gupta, Charu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Applications of Graph Theory and Complex Networks</topic><topic>Automation</topic><topic>Bidirectionality</topic><topic>Classification</topic><topic>Cloning</topic><topic>Computer Science</topic><topic>Computer viruses</topic><topic>Credibility</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Economics</topic><topic>Entertainment</topic><topic>Game Theory</topic><topic>Hoaxes</topic><topic>Humanities</topic><topic>Law</topic><topic>Machine learning</topic><topic>Methodology of the Social Sciences</topic><topic>Neural networks</topic><topic>News</topic><topic>Original Article</topic><topic>Propagation</topic><topic>Social and Behav. Sciences</topic><topic>Social media</topic><topic>Social networks</topic><topic>Statistics for Social Sciences</topic><topic>Support vector machines</topic><topic>User profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Pawan Kumar</creatorcontrib><creatorcontrib>Agrawal, Prateek</creatorcontrib><creatorcontrib>Madaan, Vishu</creatorcontrib><creatorcontrib>Gupta, Charu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Pawan Kumar</au><au>Agrawal, Prateek</au><au>Madaan, Vishu</au><au>Gupta, Charu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UCred: fusion of machine learning and deep learning methods for user credibility on social media</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>54</spage><pages>54-</pages><artnum>54</artnum><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>Online Social Network (OSN) is one of the biggest platforms that spread real and fake news. Many OSN users spread malicious data, fake news, and hoaxes using fake or social bot account for business, political and entertainment purposes. These accounts are also used to spread malicious URLs, viruses and malware. This paper proposes UCred (User Credibility) model to classify user accounts as fake or real. This model uses the combined results of RoBERT (Robustly optimized BERT), Bi-LSTM (Bidirectional LSTM) and RF (Random Forest) for the classification of profile. The output generated from all three techniques is fed into the voting classifier to improve the classification accuracy compared to state-of-the-art approaches. The proposed UCred model gives 98.96% accuracy, notably higher than the state-of-the-art model.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13278-022-00880-1</doi><orcidid>https://orcid.org/0000-0001-6861-0698</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1869-5450
ispartof Social network analysis and mining, 2022-12, Vol.12 (1), p.54, Article 54
issn 1869-5450
1869-5469
language eng
recordid cdi_proquest_journals_2919538414
source International Bibliography of the Social Sciences (IBSS); Social Science Premium Collection; Springer Link
subjects Accuracy
Applications of Graph Theory and Complex Networks
Automation
Bidirectionality
Classification
Cloning
Computer Science
Computer viruses
Credibility
Data Mining and Knowledge Discovery
Datasets
Deep learning
Economics
Entertainment
Game Theory
Hoaxes
Humanities
Law
Machine learning
Methodology of the Social Sciences
Neural networks
News
Original Article
Propagation
Social and Behav. Sciences
Social media
Social networks
Statistics for Social Sciences
Support vector machines
User profiles
title UCred: fusion of machine learning and deep learning methods for user credibility on social media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UCred:%20fusion%20of%20machine%20learning%20and%20deep%20learning%20methods%20for%20user%20credibility%20on%20social%20media&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Verma,%20Pawan%20Kumar&rft.date=2022-12-01&rft.volume=12&rft.issue=1&rft.spage=54&rft.pages=54-&rft.artnum=54&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-022-00880-1&rft_dat=%3Cproquest_cross%3E2919538414%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-80940451fa038bdf4ac8560317325b3447e90bf72688719889e204031c7d22fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919538414&rft_id=info:pmid/&rfr_iscdi=true