Loading…

Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers

. In the present paper, an attempt is made to investigate the influences of biaxial preload on the vibrational behavior of small-scale composite sheets reinforced by shape memory alloy nanofibers. Three small-scale reinforced sheets are employed to form the system. In order to cover more practical c...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2019-05, Vol.134 (5), p.218, Article 218
Main Authors: Farajpour, M. R., Shahidi, A. R., Farajpour, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13
cites cdi_FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13
container_end_page
container_issue 5
container_start_page 218
container_title European physical journal plus
container_volume 134
creator Farajpour, M. R.
Shahidi, A. R.
Farajpour, A.
description . In the present paper, an attempt is made to investigate the influences of biaxial preload on the vibrational behavior of small-scale composite sheets reinforced by shape memory alloy nanofibers. Three small-scale reinforced sheets are employed to form the system. In order to cover more practical cases, the biaxial preload and the compression ratio are assumed to be non-uniform. In addition, the three-layered composite sheet is embedded in a matrix with elastic properties. The Brinson model, nonlocal elasticity and Pasternak foundation model are used to take into account shape memory alloy effects, the influences of being size-dependent and the effects of the elastic matrix on the vibrational behavior, respectively. Performing a work/energy balance via Hamilton's principle yields the differential equations of motions. Finally, the natural frequencies are calculated via Galerkin's procedure. It is found that the natural frequencies of reinforced sheets under a preload of quadratic variation are higher than those of uniform and linear variations.
doi_str_mv 10.1140/epjp/i2019-12539-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919542052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919542052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLR_wFPA89p8luQoxY9CwYueQzadaMpusiZbYf-9aSvoybnMMPO878CL0A0ld5QKsoBhNywCI1Q3lEmuG3WGZoxq0kghxPmf-RLNS9mRWkJTocUMTevouz1EBwUnj2OKzT4Gn3KPQwxjsB0uY4ZSDveIv0Kb7RjqVOHS265rirMd4PIBMBacIcQqdrDF7VSXdgDcQ5_yhCubJhxtTD60kMs1uvC2KzD_6Vfo7fHhdfXcbF6e1qv7TeM41WOzBa5g67lScqkZWYKT2lnG-NJT54ATqqQVzimhoAKec6Gl9LT1TljlKb9CtyffIafPPZTR7NI-x_rSME21FIxIVil2olxOpWTwZsiht3kylJhDyuaQsjmmbI4pG1VF_CQqFY7vkH-t_1F9A72hhEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919542052</pqid></control><display><type>article</type><title>Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers</title><source>Springer Nature</source><creator>Farajpour, M. R. ; Shahidi, A. R. ; Farajpour, A.</creator><creatorcontrib>Farajpour, M. R. ; Shahidi, A. R. ; Farajpour, A.</creatorcontrib><description>. In the present paper, an attempt is made to investigate the influences of biaxial preload on the vibrational behavior of small-scale composite sheets reinforced by shape memory alloy nanofibers. Three small-scale reinforced sheets are employed to form the system. In order to cover more practical cases, the biaxial preload and the compression ratio are assumed to be non-uniform. In addition, the three-layered composite sheet is embedded in a matrix with elastic properties. The Brinson model, nonlocal elasticity and Pasternak foundation model are used to take into account shape memory alloy effects, the influences of being size-dependent and the effects of the elastic matrix on the vibrational behavior, respectively. Performing a work/energy balance via Hamilton's principle yields the differential equations of motions. Finally, the natural frequencies are calculated via Galerkin's procedure. It is found that the natural frequencies of reinforced sheets under a preload of quadratic variation are higher than those of uniform and linear variations.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2019-12539-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alloying effects ; Alloys ; Applied and Technical Physics ; Atomic ; Complex Systems ; Composite materials ; Compression ratio ; Condensed Matter Physics ; Differential equations ; Elastic properties ; Energy balance ; Hamilton's principle ; Initial stresses ; Laminates ; Mathematical and Computational Physics ; Molecular ; Multilayers ; Nanofibers ; Nonlocal elasticity ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Resonant frequencies ; Shape effects ; Shape memory alloys ; Theoretical ; Vibration</subject><ispartof>European physical journal plus, 2019-05, Vol.134 (5), p.218, Article 218</ispartof><rights>Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13</citedby><cites>FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13</cites><orcidid>0000-0002-2711-6316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Farajpour, M. R.</creatorcontrib><creatorcontrib>Shahidi, A. R.</creatorcontrib><creatorcontrib>Farajpour, A.</creatorcontrib><title>Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. In the present paper, an attempt is made to investigate the influences of biaxial preload on the vibrational behavior of small-scale composite sheets reinforced by shape memory alloy nanofibers. Three small-scale reinforced sheets are employed to form the system. In order to cover more practical cases, the biaxial preload and the compression ratio are assumed to be non-uniform. In addition, the three-layered composite sheet is embedded in a matrix with elastic properties. The Brinson model, nonlocal elasticity and Pasternak foundation model are used to take into account shape memory alloy effects, the influences of being size-dependent and the effects of the elastic matrix on the vibrational behavior, respectively. Performing a work/energy balance via Hamilton's principle yields the differential equations of motions. Finally, the natural frequencies are calculated via Galerkin's procedure. It is found that the natural frequencies of reinforced sheets under a preload of quadratic variation are higher than those of uniform and linear variations.</description><subject>Alloying effects</subject><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Composite materials</subject><subject>Compression ratio</subject><subject>Condensed Matter Physics</subject><subject>Differential equations</subject><subject>Elastic properties</subject><subject>Energy balance</subject><subject>Hamilton's principle</subject><subject>Initial stresses</subject><subject>Laminates</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Multilayers</subject><subject>Nanofibers</subject><subject>Nonlocal elasticity</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Resonant frequencies</subject><subject>Shape effects</subject><subject>Shape memory alloys</subject><subject>Theoretical</subject><subject>Vibration</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWLR_wFPA89p8luQoxY9CwYueQzadaMpusiZbYf-9aSvoybnMMPO878CL0A0ld5QKsoBhNywCI1Q3lEmuG3WGZoxq0kghxPmf-RLNS9mRWkJTocUMTevouz1EBwUnj2OKzT4Gn3KPQwxjsB0uY4ZSDveIv0Kb7RjqVOHS265rirMd4PIBMBacIcQqdrDF7VSXdgDcQ5_yhCubJhxtTD60kMs1uvC2KzD_6Vfo7fHhdfXcbF6e1qv7TeM41WOzBa5g67lScqkZWYKT2lnG-NJT54ATqqQVzimhoAKec6Gl9LT1TljlKb9CtyffIafPPZTR7NI-x_rSME21FIxIVil2olxOpWTwZsiht3kylJhDyuaQsjmmbI4pG1VF_CQqFY7vkH-t_1F9A72hhEc</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Farajpour, M. R.</creator><creator>Shahidi, A. R.</creator><creator>Farajpour, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-2711-6316</orcidid></search><sort><creationdate>20190501</creationdate><title>Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers</title><author>Farajpour, M. R. ; Shahidi, A. R. ; Farajpour, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloying effects</topic><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Composite materials</topic><topic>Compression ratio</topic><topic>Condensed Matter Physics</topic><topic>Differential equations</topic><topic>Elastic properties</topic><topic>Energy balance</topic><topic>Hamilton's principle</topic><topic>Initial stresses</topic><topic>Laminates</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Multilayers</topic><topic>Nanofibers</topic><topic>Nonlocal elasticity</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Resonant frequencies</topic><topic>Shape effects</topic><topic>Shape memory alloys</topic><topic>Theoretical</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farajpour, M. R.</creatorcontrib><creatorcontrib>Shahidi, A. R.</creatorcontrib><creatorcontrib>Farajpour, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farajpour, M. R.</au><au>Shahidi, A. R.</au><au>Farajpour, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>134</volume><issue>5</issue><spage>218</spage><pages>218-</pages><artnum>218</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. In the present paper, an attempt is made to investigate the influences of biaxial preload on the vibrational behavior of small-scale composite sheets reinforced by shape memory alloy nanofibers. Three small-scale reinforced sheets are employed to form the system. In order to cover more practical cases, the biaxial preload and the compression ratio are assumed to be non-uniform. In addition, the three-layered composite sheet is embedded in a matrix with elastic properties. The Brinson model, nonlocal elasticity and Pasternak foundation model are used to take into account shape memory alloy effects, the influences of being size-dependent and the effects of the elastic matrix on the vibrational behavior, respectively. Performing a work/energy balance via Hamilton's principle yields the differential equations of motions. Finally, the natural frequencies are calculated via Galerkin's procedure. It is found that the natural frequencies of reinforced sheets under a preload of quadratic variation are higher than those of uniform and linear variations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2019-12539-8</doi><orcidid>https://orcid.org/0000-0002-2711-6316</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2019-05, Vol.134 (5), p.218, Article 218
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919542052
source Springer Nature
subjects Alloying effects
Alloys
Applied and Technical Physics
Atomic
Complex Systems
Composite materials
Compression ratio
Condensed Matter Physics
Differential equations
Elastic properties
Energy balance
Hamilton's principle
Initial stresses
Laminates
Mathematical and Computational Physics
Molecular
Multilayers
Nanofibers
Nonlocal elasticity
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
Resonant frequencies
Shape effects
Shape memory alloys
Theoretical
Vibration
title Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20non-uniform%20initial%20stresses%20on%20vibration%20of%20small-scale%20sheets%20reinforced%20by%20shape%20memory%20alloy%20nanofibers&rft.jtitle=European%20physical%20journal%20plus&rft.au=Farajpour,%20M.%20R.&rft.date=2019-05-01&rft.volume=134&rft.issue=5&rft.spage=218&rft.pages=218-&rft.artnum=218&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2019-12539-8&rft_dat=%3Cproquest_cross%3E2919542052%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919542052&rft_id=info:pmid/&rfr_iscdi=true