Loading…
Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers
. In the present paper, an attempt is made to investigate the influences of biaxial preload on the vibrational behavior of small-scale composite sheets reinforced by shape memory alloy nanofibers. Three small-scale reinforced sheets are employed to form the system. In order to cover more practical c...
Saved in:
Published in: | European physical journal plus 2019-05, Vol.134 (5), p.218, Article 218 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13 |
container_end_page | |
container_issue | 5 |
container_start_page | 218 |
container_title | European physical journal plus |
container_volume | 134 |
creator | Farajpour, M. R. Shahidi, A. R. Farajpour, A. |
description | .
In the present paper, an attempt is made to investigate the influences of biaxial preload on the vibrational behavior of small-scale composite sheets reinforced by shape memory alloy nanofibers. Three small-scale reinforced sheets are employed to form the system. In order to cover more practical cases, the biaxial preload and the compression ratio are assumed to be non-uniform. In addition, the three-layered composite sheet is embedded in a matrix with elastic properties. The Brinson model, nonlocal elasticity and Pasternak foundation model are used to take into account shape memory alloy effects, the influences of being size-dependent and the effects of the elastic matrix on the vibrational behavior, respectively. Performing a work/energy balance via Hamilton's principle yields the differential equations of motions. Finally, the natural frequencies are calculated via Galerkin's procedure. It is found that the natural frequencies of reinforced sheets under a preload of quadratic variation are higher than those of uniform and linear variations. |
doi_str_mv | 10.1140/epjp/i2019-12539-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919542052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919542052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLR_wFPA89p8luQoxY9CwYueQzadaMpusiZbYf-9aSvoybnMMPO878CL0A0ld5QKsoBhNywCI1Q3lEmuG3WGZoxq0kghxPmf-RLNS9mRWkJTocUMTevouz1EBwUnj2OKzT4Gn3KPQwxjsB0uY4ZSDveIv0Kb7RjqVOHS265rirMd4PIBMBacIcQqdrDF7VSXdgDcQ5_yhCubJhxtTD60kMs1uvC2KzD_6Vfo7fHhdfXcbF6e1qv7TeM41WOzBa5g67lScqkZWYKT2lnG-NJT54ATqqQVzimhoAKec6Gl9LT1TljlKb9CtyffIafPPZTR7NI-x_rSME21FIxIVil2olxOpWTwZsiht3kylJhDyuaQsjmmbI4pG1VF_CQqFY7vkH-t_1F9A72hhEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919542052</pqid></control><display><type>article</type><title>Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers</title><source>Springer Nature</source><creator>Farajpour, M. R. ; Shahidi, A. R. ; Farajpour, A.</creator><creatorcontrib>Farajpour, M. R. ; Shahidi, A. R. ; Farajpour, A.</creatorcontrib><description>.
In the present paper, an attempt is made to investigate the influences of biaxial preload on the vibrational behavior of small-scale composite sheets reinforced by shape memory alloy nanofibers. Three small-scale reinforced sheets are employed to form the system. In order to cover more practical cases, the biaxial preload and the compression ratio are assumed to be non-uniform. In addition, the three-layered composite sheet is embedded in a matrix with elastic properties. The Brinson model, nonlocal elasticity and Pasternak foundation model are used to take into account shape memory alloy effects, the influences of being size-dependent and the effects of the elastic matrix on the vibrational behavior, respectively. Performing a work/energy balance via Hamilton's principle yields the differential equations of motions. Finally, the natural frequencies are calculated via Galerkin's procedure. It is found that the natural frequencies of reinforced sheets under a preload of quadratic variation are higher than those of uniform and linear variations.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2019-12539-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alloying effects ; Alloys ; Applied and Technical Physics ; Atomic ; Complex Systems ; Composite materials ; Compression ratio ; Condensed Matter Physics ; Differential equations ; Elastic properties ; Energy balance ; Hamilton's principle ; Initial stresses ; Laminates ; Mathematical and Computational Physics ; Molecular ; Multilayers ; Nanofibers ; Nonlocal elasticity ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Resonant frequencies ; Shape effects ; Shape memory alloys ; Theoretical ; Vibration</subject><ispartof>European physical journal plus, 2019-05, Vol.134 (5), p.218, Article 218</ispartof><rights>Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13</citedby><cites>FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13</cites><orcidid>0000-0002-2711-6316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Farajpour, M. R.</creatorcontrib><creatorcontrib>Shahidi, A. R.</creatorcontrib><creatorcontrib>Farajpour, A.</creatorcontrib><title>Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>.
In the present paper, an attempt is made to investigate the influences of biaxial preload on the vibrational behavior of small-scale composite sheets reinforced by shape memory alloy nanofibers. Three small-scale reinforced sheets are employed to form the system. In order to cover more practical cases, the biaxial preload and the compression ratio are assumed to be non-uniform. In addition, the three-layered composite sheet is embedded in a matrix with elastic properties. The Brinson model, nonlocal elasticity and Pasternak foundation model are used to take into account shape memory alloy effects, the influences of being size-dependent and the effects of the elastic matrix on the vibrational behavior, respectively. Performing a work/energy balance via Hamilton's principle yields the differential equations of motions. Finally, the natural frequencies are calculated via Galerkin's procedure. It is found that the natural frequencies of reinforced sheets under a preload of quadratic variation are higher than those of uniform and linear variations.</description><subject>Alloying effects</subject><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Composite materials</subject><subject>Compression ratio</subject><subject>Condensed Matter Physics</subject><subject>Differential equations</subject><subject>Elastic properties</subject><subject>Energy balance</subject><subject>Hamilton's principle</subject><subject>Initial stresses</subject><subject>Laminates</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Multilayers</subject><subject>Nanofibers</subject><subject>Nonlocal elasticity</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Resonant frequencies</subject><subject>Shape effects</subject><subject>Shape memory alloys</subject><subject>Theoretical</subject><subject>Vibration</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWLR_wFPA89p8luQoxY9CwYueQzadaMpusiZbYf-9aSvoybnMMPO878CL0A0ld5QKsoBhNywCI1Q3lEmuG3WGZoxq0kghxPmf-RLNS9mRWkJTocUMTevouz1EBwUnj2OKzT4Gn3KPQwxjsB0uY4ZSDveIv0Kb7RjqVOHS265rirMd4PIBMBacIcQqdrDF7VSXdgDcQ5_yhCubJhxtTD60kMs1uvC2KzD_6Vfo7fHhdfXcbF6e1qv7TeM41WOzBa5g67lScqkZWYKT2lnG-NJT54ATqqQVzimhoAKec6Gl9LT1TljlKb9CtyffIafPPZTR7NI-x_rSME21FIxIVil2olxOpWTwZsiht3kylJhDyuaQsjmmbI4pG1VF_CQqFY7vkH-t_1F9A72hhEc</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Farajpour, M. R.</creator><creator>Shahidi, A. R.</creator><creator>Farajpour, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-2711-6316</orcidid></search><sort><creationdate>20190501</creationdate><title>Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers</title><author>Farajpour, M. R. ; Shahidi, A. R. ; Farajpour, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloying effects</topic><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Composite materials</topic><topic>Compression ratio</topic><topic>Condensed Matter Physics</topic><topic>Differential equations</topic><topic>Elastic properties</topic><topic>Energy balance</topic><topic>Hamilton's principle</topic><topic>Initial stresses</topic><topic>Laminates</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Multilayers</topic><topic>Nanofibers</topic><topic>Nonlocal elasticity</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Resonant frequencies</topic><topic>Shape effects</topic><topic>Shape memory alloys</topic><topic>Theoretical</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farajpour, M. R.</creatorcontrib><creatorcontrib>Shahidi, A. R.</creatorcontrib><creatorcontrib>Farajpour, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farajpour, M. R.</au><au>Shahidi, A. R.</au><au>Farajpour, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>134</volume><issue>5</issue><spage>218</spage><pages>218-</pages><artnum>218</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>.
In the present paper, an attempt is made to investigate the influences of biaxial preload on the vibrational behavior of small-scale composite sheets reinforced by shape memory alloy nanofibers. Three small-scale reinforced sheets are employed to form the system. In order to cover more practical cases, the biaxial preload and the compression ratio are assumed to be non-uniform. In addition, the three-layered composite sheet is embedded in a matrix with elastic properties. The Brinson model, nonlocal elasticity and Pasternak foundation model are used to take into account shape memory alloy effects, the influences of being size-dependent and the effects of the elastic matrix on the vibrational behavior, respectively. Performing a work/energy balance via Hamilton's principle yields the differential equations of motions. Finally, the natural frequencies are calculated via Galerkin's procedure. It is found that the natural frequencies of reinforced sheets under a preload of quadratic variation are higher than those of uniform and linear variations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2019-12539-8</doi><orcidid>https://orcid.org/0000-0002-2711-6316</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2019-05, Vol.134 (5), p.218, Article 218 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919542052 |
source | Springer Nature |
subjects | Alloying effects Alloys Applied and Technical Physics Atomic Complex Systems Composite materials Compression ratio Condensed Matter Physics Differential equations Elastic properties Energy balance Hamilton's principle Initial stresses Laminates Mathematical and Computational Physics Molecular Multilayers Nanofibers Nonlocal elasticity Optical and Plasma Physics Physics Physics and Astronomy Regular Article Resonant frequencies Shape effects Shape memory alloys Theoretical Vibration |
title | Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20non-uniform%20initial%20stresses%20on%20vibration%20of%20small-scale%20sheets%20reinforced%20by%20shape%20memory%20alloy%20nanofibers&rft.jtitle=European%20physical%20journal%20plus&rft.au=Farajpour,%20M.%20R.&rft.date=2019-05-01&rft.volume=134&rft.issue=5&rft.spage=218&rft.pages=218-&rft.artnum=218&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2019-12539-8&rft_dat=%3Cproquest_cross%3E2919542052%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-de38edf388569206ec59ca2236f1cce30185a4cc848e692f334955f1bfc4a8f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919542052&rft_id=info:pmid/&rfr_iscdi=true |