Loading…
On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment
In this paper, the wave propagation of functionally graded single-walled carbon nanotubes strengthened fluid-conveying pipe considering the thermal and fluid effects is investigated. Five reinforcement patterns are realized by changing CNT distribution along thickness. The rule of mixture is used to...
Saved in:
Published in: | European physical journal plus 2022-10, Vol.137 (10), p.1158, Article 1158 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63 |
container_end_page | |
container_issue | 10 |
container_start_page | 1158 |
container_title | European physical journal plus |
container_volume | 137 |
creator | Chen, Xu Zhao, Jing-Lei She, Gui-Lin Jing, Yan Luo, Jun Pu, Hua-Yan |
description | In this paper, the wave propagation of functionally graded single-walled carbon nanotubes strengthened fluid-conveying pipe considering the thermal and fluid effects is investigated. Five reinforcement patterns are realized by changing CNT distribution along thickness. The rule of mixture is used to estimate the nanocomposite materials properties. And the motion equations were derived by Hamilton’s variational principle and a higher-order beam theory. By solving a system of differential equations, the influences of the patterns of reinforcement, flow velocity, temperature, geometrical parameters and CNT volume fraction are discussed in detail. We find that increasing the volume fraction can significantly increase the propagation velocity of waves, and the flow velocity has very little effect on wave propagation in pipe. |
doi_str_mv | 10.1140/epjp/s13360-022-03234-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919544668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919544668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEElPZbyAS57B8rW2OaOJLmthlnKOQOqVTl5akHdq_J6NIcMMH-5Xt15IfhK4ZvWVM0gX0u34RmRA5JZRzQgUXktAzNONMUbKUUp7_0ZdoHuOOppCKSSVnqN54_GkOgPvQ9aY2Q9N53DnsRm9P2rTtEdfBVFDh1csWxyGAr4d38Knh2rGpiO38AY6Nr3Hf9IAbj9M47E2LwR-a0Pk9-OEKXTjTRpj_1Ay9PtxvV09kvXl8Xt2tiRVCDsSa0poCSmDgmCtzlr8tKbeUg-VUlcwZ5QpeGWGVLGzhLDBruXGOcSWdyUWGbqa76Z-PEeKgd90Y0htRc8VUgpDnZdoqpi0buhgDON2HZm_CUTOqT2D1CayewOoEVn-DTTlD5eSMyeFrCL_3_7N-ATxWga0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919544668</pqid></control><display><type>article</type><title>On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment</title><source>Springer Link</source><creator>Chen, Xu ; Zhao, Jing-Lei ; She, Gui-Lin ; Jing, Yan ; Luo, Jun ; Pu, Hua-Yan</creator><creatorcontrib>Chen, Xu ; Zhao, Jing-Lei ; She, Gui-Lin ; Jing, Yan ; Luo, Jun ; Pu, Hua-Yan</creatorcontrib><description>In this paper, the wave propagation of functionally graded single-walled carbon nanotubes strengthened fluid-conveying pipe considering the thermal and fluid effects is investigated. Five reinforcement patterns are realized by changing CNT distribution along thickness. The rule of mixture is used to estimate the nanocomposite materials properties. And the motion equations were derived by Hamilton’s variational principle and a higher-order beam theory. By solving a system of differential equations, the influences of the patterns of reinforcement, flow velocity, temperature, geometrical parameters and CNT volume fraction are discussed in detail. We find that increasing the volume fraction can significantly increase the propagation velocity of waves, and the flow velocity has very little effect on wave propagation in pipe.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03234-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Carbon ; Complex Systems ; Composite materials ; Condensed Matter Physics ; Conveying ; Deformation ; Differential equations ; Equations of motion ; Flow velocity ; Functionally gradient materials ; Investigations ; Material properties ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Nanocomposites ; Nanotechnology ; Nondestructive testing ; Optical and Plasma Physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Pipes ; Propagation ; Propagation velocity ; Regular Article ; Single wall carbon nanotubes ; Theoretical ; Thermal environments ; Vibration ; Wave propagation ; Wave velocity</subject><ispartof>European physical journal plus, 2022-10, Vol.137 (10), p.1158, Article 1158</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63</citedby><cites>FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Zhao, Jing-Lei</creatorcontrib><creatorcontrib>She, Gui-Lin</creatorcontrib><creatorcontrib>Jing, Yan</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Pu, Hua-Yan</creatorcontrib><title>On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this paper, the wave propagation of functionally graded single-walled carbon nanotubes strengthened fluid-conveying pipe considering the thermal and fluid effects is investigated. Five reinforcement patterns are realized by changing CNT distribution along thickness. The rule of mixture is used to estimate the nanocomposite materials properties. And the motion equations were derived by Hamilton’s variational principle and a higher-order beam theory. By solving a system of differential equations, the influences of the patterns of reinforcement, flow velocity, temperature, geometrical parameters and CNT volume fraction are discussed in detail. We find that increasing the volume fraction can significantly increase the propagation velocity of waves, and the flow velocity has very little effect on wave propagation in pipe.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Carbon</subject><subject>Complex Systems</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Conveying</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Equations of motion</subject><subject>Flow velocity</subject><subject>Functionally gradient materials</subject><subject>Investigations</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Nondestructive testing</subject><subject>Optical and Plasma Physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pipes</subject><subject>Propagation</subject><subject>Propagation velocity</subject><subject>Regular Article</subject><subject>Single wall carbon nanotubes</subject><subject>Theoretical</subject><subject>Thermal environments</subject><subject>Vibration</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEElPZbyAS57B8rW2OaOJLmthlnKOQOqVTl5akHdq_J6NIcMMH-5Xt15IfhK4ZvWVM0gX0u34RmRA5JZRzQgUXktAzNONMUbKUUp7_0ZdoHuOOppCKSSVnqN54_GkOgPvQ9aY2Q9N53DnsRm9P2rTtEdfBVFDh1csWxyGAr4d38Knh2rGpiO38AY6Nr3Hf9IAbj9M47E2LwR-a0Pk9-OEKXTjTRpj_1Ay9PtxvV09kvXl8Xt2tiRVCDsSa0poCSmDgmCtzlr8tKbeUg-VUlcwZ5QpeGWGVLGzhLDBruXGOcSWdyUWGbqa76Z-PEeKgd90Y0htRc8VUgpDnZdoqpi0buhgDON2HZm_CUTOqT2D1CayewOoEVn-DTTlD5eSMyeFrCL_3_7N-ATxWga0</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Chen, Xu</creator><creator>Zhao, Jing-Lei</creator><creator>She, Gui-Lin</creator><creator>Jing, Yan</creator><creator>Luo, Jun</creator><creator>Pu, Hua-Yan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20221019</creationdate><title>On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment</title><author>Chen, Xu ; Zhao, Jing-Lei ; She, Gui-Lin ; Jing, Yan ; Luo, Jun ; Pu, Hua-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Carbon</topic><topic>Complex Systems</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Conveying</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Equations of motion</topic><topic>Flow velocity</topic><topic>Functionally gradient materials</topic><topic>Investigations</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Nondestructive testing</topic><topic>Optical and Plasma Physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pipes</topic><topic>Propagation</topic><topic>Propagation velocity</topic><topic>Regular Article</topic><topic>Single wall carbon nanotubes</topic><topic>Theoretical</topic><topic>Thermal environments</topic><topic>Vibration</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Zhao, Jing-Lei</creatorcontrib><creatorcontrib>She, Gui-Lin</creatorcontrib><creatorcontrib>Jing, Yan</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Pu, Hua-Yan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xu</au><au>Zhao, Jing-Lei</au><au>She, Gui-Lin</au><au>Jing, Yan</au><au>Luo, Jun</au><au>Pu, Hua-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-10-19</date><risdate>2022</risdate><volume>137</volume><issue>10</issue><spage>1158</spage><pages>1158-</pages><artnum>1158</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this paper, the wave propagation of functionally graded single-walled carbon nanotubes strengthened fluid-conveying pipe considering the thermal and fluid effects is investigated. Five reinforcement patterns are realized by changing CNT distribution along thickness. The rule of mixture is used to estimate the nanocomposite materials properties. And the motion equations were derived by Hamilton’s variational principle and a higher-order beam theory. By solving a system of differential equations, the influences of the patterns of reinforcement, flow velocity, temperature, geometrical parameters and CNT volume fraction are discussed in detail. We find that increasing the volume fraction can significantly increase the propagation velocity of waves, and the flow velocity has very little effect on wave propagation in pipe.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03234-0</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2022-10, Vol.137 (10), p.1158, Article 1158 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919544668 |
source | Springer Link |
subjects | Applied and Technical Physics Atomic Carbon Complex Systems Composite materials Condensed Matter Physics Conveying Deformation Differential equations Equations of motion Flow velocity Functionally gradient materials Investigations Material properties Mathematical analysis Mathematical and Computational Physics Molecular Nanocomposites Nanotechnology Nondestructive testing Optical and Plasma Physics Partial differential equations Physics Physics and Astronomy Pipes Propagation Propagation velocity Regular Article Single wall carbon nanotubes Theoretical Thermal environments Vibration Wave propagation Wave velocity |
title | On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20wave%20propagation%20of%20functionally%20graded%20CNT%20strengthened%20fluid-conveying%20pipe%20in%20thermal%20environment&rft.jtitle=European%20physical%20journal%20plus&rft.au=Chen,%20Xu&rft.date=2022-10-19&rft.volume=137&rft.issue=10&rft.spage=1158&rft.pages=1158-&rft.artnum=1158&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03234-0&rft_dat=%3Cproquest_cross%3E2919544668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919544668&rft_id=info:pmid/&rfr_iscdi=true |