Loading…

On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment

In this paper, the wave propagation of functionally graded single-walled carbon nanotubes strengthened fluid-conveying pipe considering the thermal and fluid effects is investigated. Five reinforcement patterns are realized by changing CNT distribution along thickness. The rule of mixture is used to...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2022-10, Vol.137 (10), p.1158, Article 1158
Main Authors: Chen, Xu, Zhao, Jing-Lei, She, Gui-Lin, Jing, Yan, Luo, Jun, Pu, Hua-Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63
cites cdi_FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63
container_end_page
container_issue 10
container_start_page 1158
container_title European physical journal plus
container_volume 137
creator Chen, Xu
Zhao, Jing-Lei
She, Gui-Lin
Jing, Yan
Luo, Jun
Pu, Hua-Yan
description In this paper, the wave propagation of functionally graded single-walled carbon nanotubes strengthened fluid-conveying pipe considering the thermal and fluid effects is investigated. Five reinforcement patterns are realized by changing CNT distribution along thickness. The rule of mixture is used to estimate the nanocomposite materials properties. And the motion equations were derived by Hamilton’s variational principle and a higher-order beam theory. By solving a system of differential equations, the influences of the patterns of reinforcement, flow velocity, temperature, geometrical parameters and CNT volume fraction are discussed in detail. We find that increasing the volume fraction can significantly increase the propagation velocity of waves, and the flow velocity has very little effect on wave propagation in pipe.
doi_str_mv 10.1140/epjp/s13360-022-03234-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919544668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919544668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEElPZbyAS57B8rW2OaOJLmthlnKOQOqVTl5akHdq_J6NIcMMH-5Xt15IfhK4ZvWVM0gX0u34RmRA5JZRzQgUXktAzNONMUbKUUp7_0ZdoHuOOppCKSSVnqN54_GkOgPvQ9aY2Q9N53DnsRm9P2rTtEdfBVFDh1csWxyGAr4d38Knh2rGpiO38AY6Nr3Hf9IAbj9M47E2LwR-a0Pk9-OEKXTjTRpj_1Ay9PtxvV09kvXl8Xt2tiRVCDsSa0poCSmDgmCtzlr8tKbeUg-VUlcwZ5QpeGWGVLGzhLDBruXGOcSWdyUWGbqa76Z-PEeKgd90Y0htRc8VUgpDnZdoqpi0buhgDON2HZm_CUTOqT2D1CayewOoEVn-DTTlD5eSMyeFrCL_3_7N-ATxWga0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919544668</pqid></control><display><type>article</type><title>On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment</title><source>Springer Link</source><creator>Chen, Xu ; Zhao, Jing-Lei ; She, Gui-Lin ; Jing, Yan ; Luo, Jun ; Pu, Hua-Yan</creator><creatorcontrib>Chen, Xu ; Zhao, Jing-Lei ; She, Gui-Lin ; Jing, Yan ; Luo, Jun ; Pu, Hua-Yan</creatorcontrib><description>In this paper, the wave propagation of functionally graded single-walled carbon nanotubes strengthened fluid-conveying pipe considering the thermal and fluid effects is investigated. Five reinforcement patterns are realized by changing CNT distribution along thickness. The rule of mixture is used to estimate the nanocomposite materials properties. And the motion equations were derived by Hamilton’s variational principle and a higher-order beam theory. By solving a system of differential equations, the influences of the patterns of reinforcement, flow velocity, temperature, geometrical parameters and CNT volume fraction are discussed in detail. We find that increasing the volume fraction can significantly increase the propagation velocity of waves, and the flow velocity has very little effect on wave propagation in pipe.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03234-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Carbon ; Complex Systems ; Composite materials ; Condensed Matter Physics ; Conveying ; Deformation ; Differential equations ; Equations of motion ; Flow velocity ; Functionally gradient materials ; Investigations ; Material properties ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Nanocomposites ; Nanotechnology ; Nondestructive testing ; Optical and Plasma Physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Pipes ; Propagation ; Propagation velocity ; Regular Article ; Single wall carbon nanotubes ; Theoretical ; Thermal environments ; Vibration ; Wave propagation ; Wave velocity</subject><ispartof>European physical journal plus, 2022-10, Vol.137 (10), p.1158, Article 1158</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63</citedby><cites>FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Zhao, Jing-Lei</creatorcontrib><creatorcontrib>She, Gui-Lin</creatorcontrib><creatorcontrib>Jing, Yan</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Pu, Hua-Yan</creatorcontrib><title>On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this paper, the wave propagation of functionally graded single-walled carbon nanotubes strengthened fluid-conveying pipe considering the thermal and fluid effects is investigated. Five reinforcement patterns are realized by changing CNT distribution along thickness. The rule of mixture is used to estimate the nanocomposite materials properties. And the motion equations were derived by Hamilton’s variational principle and a higher-order beam theory. By solving a system of differential equations, the influences of the patterns of reinforcement, flow velocity, temperature, geometrical parameters and CNT volume fraction are discussed in detail. We find that increasing the volume fraction can significantly increase the propagation velocity of waves, and the flow velocity has very little effect on wave propagation in pipe.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Carbon</subject><subject>Complex Systems</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Conveying</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Equations of motion</subject><subject>Flow velocity</subject><subject>Functionally gradient materials</subject><subject>Investigations</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Nondestructive testing</subject><subject>Optical and Plasma Physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pipes</subject><subject>Propagation</subject><subject>Propagation velocity</subject><subject>Regular Article</subject><subject>Single wall carbon nanotubes</subject><subject>Theoretical</subject><subject>Thermal environments</subject><subject>Vibration</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEElPZbyAS57B8rW2OaOJLmthlnKOQOqVTl5akHdq_J6NIcMMH-5Xt15IfhK4ZvWVM0gX0u34RmRA5JZRzQgUXktAzNONMUbKUUp7_0ZdoHuOOppCKSSVnqN54_GkOgPvQ9aY2Q9N53DnsRm9P2rTtEdfBVFDh1csWxyGAr4d38Knh2rGpiO38AY6Nr3Hf9IAbj9M47E2LwR-a0Pk9-OEKXTjTRpj_1Ay9PtxvV09kvXl8Xt2tiRVCDsSa0poCSmDgmCtzlr8tKbeUg-VUlcwZ5QpeGWGVLGzhLDBruXGOcSWdyUWGbqa76Z-PEeKgd90Y0htRc8VUgpDnZdoqpi0buhgDON2HZm_CUTOqT2D1CayewOoEVn-DTTlD5eSMyeFrCL_3_7N-ATxWga0</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Chen, Xu</creator><creator>Zhao, Jing-Lei</creator><creator>She, Gui-Lin</creator><creator>Jing, Yan</creator><creator>Luo, Jun</creator><creator>Pu, Hua-Yan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20221019</creationdate><title>On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment</title><author>Chen, Xu ; Zhao, Jing-Lei ; She, Gui-Lin ; Jing, Yan ; Luo, Jun ; Pu, Hua-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Carbon</topic><topic>Complex Systems</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Conveying</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Equations of motion</topic><topic>Flow velocity</topic><topic>Functionally gradient materials</topic><topic>Investigations</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Nondestructive testing</topic><topic>Optical and Plasma Physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pipes</topic><topic>Propagation</topic><topic>Propagation velocity</topic><topic>Regular Article</topic><topic>Single wall carbon nanotubes</topic><topic>Theoretical</topic><topic>Thermal environments</topic><topic>Vibration</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Zhao, Jing-Lei</creatorcontrib><creatorcontrib>She, Gui-Lin</creatorcontrib><creatorcontrib>Jing, Yan</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Pu, Hua-Yan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xu</au><au>Zhao, Jing-Lei</au><au>She, Gui-Lin</au><au>Jing, Yan</au><au>Luo, Jun</au><au>Pu, Hua-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-10-19</date><risdate>2022</risdate><volume>137</volume><issue>10</issue><spage>1158</spage><pages>1158-</pages><artnum>1158</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this paper, the wave propagation of functionally graded single-walled carbon nanotubes strengthened fluid-conveying pipe considering the thermal and fluid effects is investigated. Five reinforcement patterns are realized by changing CNT distribution along thickness. The rule of mixture is used to estimate the nanocomposite materials properties. And the motion equations were derived by Hamilton’s variational principle and a higher-order beam theory. By solving a system of differential equations, the influences of the patterns of reinforcement, flow velocity, temperature, geometrical parameters and CNT volume fraction are discussed in detail. We find that increasing the volume fraction can significantly increase the propagation velocity of waves, and the flow velocity has very little effect on wave propagation in pipe.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03234-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2022-10, Vol.137 (10), p.1158, Article 1158
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919544668
source Springer Link
subjects Applied and Technical Physics
Atomic
Carbon
Complex Systems
Composite materials
Condensed Matter Physics
Conveying
Deformation
Differential equations
Equations of motion
Flow velocity
Functionally gradient materials
Investigations
Material properties
Mathematical analysis
Mathematical and Computational Physics
Molecular
Nanocomposites
Nanotechnology
Nondestructive testing
Optical and Plasma Physics
Partial differential equations
Physics
Physics and Astronomy
Pipes
Propagation
Propagation velocity
Regular Article
Single wall carbon nanotubes
Theoretical
Thermal environments
Vibration
Wave propagation
Wave velocity
title On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20wave%20propagation%20of%20functionally%20graded%20CNT%20strengthened%20fluid-conveying%20pipe%20in%20thermal%20environment&rft.jtitle=European%20physical%20journal%20plus&rft.au=Chen,%20Xu&rft.date=2022-10-19&rft.volume=137&rft.issue=10&rft.spage=1158&rft.pages=1158-&rft.artnum=1158&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03234-0&rft_dat=%3Cproquest_cross%3E2919544668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-ca8ca7e8e1ef1f8616b502c02ec20981fa9f72da3c947c7fce1cc2aff1294fa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919544668&rft_id=info:pmid/&rfr_iscdi=true