Loading…
A robust methodology for classification of epileptic seizures in EEG signals
Drug inefficiency in patients with refractory seizures renders epilepsy a life-threatening and challenging brain disorder and stresses the need for accurate seizure detection and prediction methods and more personalized closed-loop treatment systems. In this paper, a multicenter methodology for auto...
Saved in:
Published in: | Health and technology 2019-03, Vol.9 (2), p.135-142 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73 |
container_end_page | 142 |
container_issue | 2 |
container_start_page | 135 |
container_title | Health and technology |
container_volume | 9 |
creator | Tzimourta, Katerina D. Tzallas, Alexandros T. Giannakeas, Nikolaos Astrakas, Loukas G. Tsalikakis, Dimitrios G. Angelidis, Pantelis Tsipouras, Markos G. |
description | Drug inefficiency in patients with refractory seizures renders epilepsy a life-threatening and challenging brain disorder and stresses the need for accurate seizure detection and prediction methods and more personalized closed-loop treatment systems. In this paper, a multicenter methodology for automated seizure detection based on Discrete Wavelet Transform (DWT) is presented. A decomposition of 5 levels is applied in each EEG segment and five features are extracted from the wavelet coefficients. The extracted feature vector is used to train a Random Forest classifier and discriminate between ictal and interictal data. EEG recordings from the database of University of Bonn and the database of the University Hospital of Freiburg were employed, in an attempt to test the efficiency and robustness of the method. Classification results in both databases are significant, reaching accuracy above 95% and confirming the robustness of the methodology. Sensitivity and False Positive Rate for the Freiburg database reached 99.74% and 0.21/h respectively. |
doi_str_mv | 10.1007/s12553-018-0265-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919598006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919598006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EElXpD2CzxGx4TmonHquqFKRKLDBbrvNcXKVxsJOh-fWkCoKJt9wb7k6nj5B7Do8coHhKPBMiZ8BLBpkUbLgis4wrYAVX8vr3L8tbskjpCOMJLtQyn5Hdisaw71NHT9h9hirU4XCmLkRqa5OSd96azoeGBkex9TW2nbc0oR_6iIn6hm42W5r8oTF1uiM3bhRc_OicfDxv3tcvbPe2fV2vdszmXHYMK1NIEHuL1lV8WUKeSaPAmD2IUqmlklgYV3BpXCXRcqkKJ51CU8nKoivyOXmYetsYvnpMnT6GPl4W6ExxJVQJIEcXn1w2hpQiOt1GfzLxrDnoCzc9cdMjN33hpocxk02ZNHqbA8a_5v9D3xDVcYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919598006</pqid></control><display><type>article</type><title>A robust methodology for classification of epileptic seizures in EEG signals</title><source>Springer Link</source><creator>Tzimourta, Katerina D. ; Tzallas, Alexandros T. ; Giannakeas, Nikolaos ; Astrakas, Loukas G. ; Tsalikakis, Dimitrios G. ; Angelidis, Pantelis ; Tsipouras, Markos G.</creator><creatorcontrib>Tzimourta, Katerina D. ; Tzallas, Alexandros T. ; Giannakeas, Nikolaos ; Astrakas, Loukas G. ; Tsalikakis, Dimitrios G. ; Angelidis, Pantelis ; Tsipouras, Markos G.</creatorcontrib><description>Drug inefficiency in patients with refractory seizures renders epilepsy a life-threatening and challenging brain disorder and stresses the need for accurate seizure detection and prediction methods and more personalized closed-loop treatment systems. In this paper, a multicenter methodology for automated seizure detection based on Discrete Wavelet Transform (DWT) is presented. A decomposition of 5 levels is applied in each EEG segment and five features are extracted from the wavelet coefficients. The extracted feature vector is used to train a Random Forest classifier and discriminate between ictal and interictal data. EEG recordings from the database of University of Bonn and the database of the University Hospital of Freiburg were employed, in an attempt to test the efficiency and robustness of the method. Classification results in both databases are significant, reaching accuracy above 95% and confirming the robustness of the methodology. Sensitivity and False Positive Rate for the Freiburg database reached 99.74% and 0.21/h respectively.</description><identifier>ISSN: 2190-7188</identifier><identifier>EISSN: 2190-7196</identifier><identifier>DOI: 10.1007/s12553-018-0265-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Automation ; Bandwidths ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Brain research ; Classification ; Closed loops ; Computational Biology/Bioinformatics ; Convulsions & seizures ; Discrete Wavelet Transform ; Electroencephalography ; Engineering ; Epilepsy ; Mathematical functions ; Medicine/Public Health ; Methodology ; Methods ; Neurological disorders ; Original Paper ; Patients ; Principal components analysis ; R & D/Technology Policy ; Robustness ; Seizures ; Support vector machines ; Wavelet transforms</subject><ispartof>Health and technology, 2019-03, Vol.9 (2), p.135-142</ispartof><rights>IUPESM and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>IUPESM and Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73</citedby><cites>FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tzimourta, Katerina D.</creatorcontrib><creatorcontrib>Tzallas, Alexandros T.</creatorcontrib><creatorcontrib>Giannakeas, Nikolaos</creatorcontrib><creatorcontrib>Astrakas, Loukas G.</creatorcontrib><creatorcontrib>Tsalikakis, Dimitrios G.</creatorcontrib><creatorcontrib>Angelidis, Pantelis</creatorcontrib><creatorcontrib>Tsipouras, Markos G.</creatorcontrib><title>A robust methodology for classification of epileptic seizures in EEG signals</title><title>Health and technology</title><addtitle>Health Technol</addtitle><description>Drug inefficiency in patients with refractory seizures renders epilepsy a life-threatening and challenging brain disorder and stresses the need for accurate seizure detection and prediction methods and more personalized closed-loop treatment systems. In this paper, a multicenter methodology for automated seizure detection based on Discrete Wavelet Transform (DWT) is presented. A decomposition of 5 levels is applied in each EEG segment and five features are extracted from the wavelet coefficients. The extracted feature vector is used to train a Random Forest classifier and discriminate between ictal and interictal data. EEG recordings from the database of University of Bonn and the database of the University Hospital of Freiburg were employed, in an attempt to test the efficiency and robustness of the method. Classification results in both databases are significant, reaching accuracy above 95% and confirming the robustness of the methodology. Sensitivity and False Positive Rate for the Freiburg database reached 99.74% and 0.21/h respectively.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Bandwidths</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Brain research</subject><subject>Classification</subject><subject>Closed loops</subject><subject>Computational Biology/Bioinformatics</subject><subject>Convulsions & seizures</subject><subject>Discrete Wavelet Transform</subject><subject>Electroencephalography</subject><subject>Engineering</subject><subject>Epilepsy</subject><subject>Mathematical functions</subject><subject>Medicine/Public Health</subject><subject>Methodology</subject><subject>Methods</subject><subject>Neurological disorders</subject><subject>Original Paper</subject><subject>Patients</subject><subject>Principal components analysis</subject><subject>R & D/Technology Policy</subject><subject>Robustness</subject><subject>Seizures</subject><subject>Support vector machines</subject><subject>Wavelet transforms</subject><issn>2190-7188</issn><issn>2190-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EElXpD2CzxGx4TmonHquqFKRKLDBbrvNcXKVxsJOh-fWkCoKJt9wb7k6nj5B7Do8coHhKPBMiZ8BLBpkUbLgis4wrYAVX8vr3L8tbskjpCOMJLtQyn5Hdisaw71NHT9h9hirU4XCmLkRqa5OSd96azoeGBkex9TW2nbc0oR_6iIn6hm42W5r8oTF1uiM3bhRc_OicfDxv3tcvbPe2fV2vdszmXHYMK1NIEHuL1lV8WUKeSaPAmD2IUqmlklgYV3BpXCXRcqkKJ51CU8nKoivyOXmYetsYvnpMnT6GPl4W6ExxJVQJIEcXn1w2hpQiOt1GfzLxrDnoCzc9cdMjN33hpocxk02ZNHqbA8a_5v9D3xDVcYg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Tzimourta, Katerina D.</creator><creator>Tzallas, Alexandros T.</creator><creator>Giannakeas, Nikolaos</creator><creator>Astrakas, Loukas G.</creator><creator>Tsalikakis, Dimitrios G.</creator><creator>Angelidis, Pantelis</creator><creator>Tsipouras, Markos G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190301</creationdate><title>A robust methodology for classification of epileptic seizures in EEG signals</title><author>Tzimourta, Katerina D. ; Tzallas, Alexandros T. ; Giannakeas, Nikolaos ; Astrakas, Loukas G. ; Tsalikakis, Dimitrios G. ; Angelidis, Pantelis ; Tsipouras, Markos G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Bandwidths</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Brain research</topic><topic>Classification</topic><topic>Closed loops</topic><topic>Computational Biology/Bioinformatics</topic><topic>Convulsions & seizures</topic><topic>Discrete Wavelet Transform</topic><topic>Electroencephalography</topic><topic>Engineering</topic><topic>Epilepsy</topic><topic>Mathematical functions</topic><topic>Medicine/Public Health</topic><topic>Methodology</topic><topic>Methods</topic><topic>Neurological disorders</topic><topic>Original Paper</topic><topic>Patients</topic><topic>Principal components analysis</topic><topic>R & D/Technology Policy</topic><topic>Robustness</topic><topic>Seizures</topic><topic>Support vector machines</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Tzimourta, Katerina D.</creatorcontrib><creatorcontrib>Tzallas, Alexandros T.</creatorcontrib><creatorcontrib>Giannakeas, Nikolaos</creatorcontrib><creatorcontrib>Astrakas, Loukas G.</creatorcontrib><creatorcontrib>Tsalikakis, Dimitrios G.</creatorcontrib><creatorcontrib>Angelidis, Pantelis</creatorcontrib><creatorcontrib>Tsipouras, Markos G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Health and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzimourta, Katerina D.</au><au>Tzallas, Alexandros T.</au><au>Giannakeas, Nikolaos</au><au>Astrakas, Loukas G.</au><au>Tsalikakis, Dimitrios G.</au><au>Angelidis, Pantelis</au><au>Tsipouras, Markos G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust methodology for classification of epileptic seizures in EEG signals</atitle><jtitle>Health and technology</jtitle><stitle>Health Technol</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>9</volume><issue>2</issue><spage>135</spage><epage>142</epage><pages>135-142</pages><issn>2190-7188</issn><eissn>2190-7196</eissn><abstract>Drug inefficiency in patients with refractory seizures renders epilepsy a life-threatening and challenging brain disorder and stresses the need for accurate seizure detection and prediction methods and more personalized closed-loop treatment systems. In this paper, a multicenter methodology for automated seizure detection based on Discrete Wavelet Transform (DWT) is presented. A decomposition of 5 levels is applied in each EEG segment and five features are extracted from the wavelet coefficients. The extracted feature vector is used to train a Random Forest classifier and discriminate between ictal and interictal data. EEG recordings from the database of University of Bonn and the database of the University Hospital of Freiburg were employed, in an attempt to test the efficiency and robustness of the method. Classification results in both databases are significant, reaching accuracy above 95% and confirming the robustness of the methodology. Sensitivity and False Positive Rate for the Freiburg database reached 99.74% and 0.21/h respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12553-018-0265-z</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-7188 |
ispartof | Health and technology, 2019-03, Vol.9 (2), p.135-142 |
issn | 2190-7188 2190-7196 |
language | eng |
recordid | cdi_proquest_journals_2919598006 |
source | Springer Link |
subjects | Accuracy Automation Bandwidths Biological and Medical Physics Biomedical Engineering and Bioengineering Biomedicine Biophysics Brain research Classification Closed loops Computational Biology/Bioinformatics Convulsions & seizures Discrete Wavelet Transform Electroencephalography Engineering Epilepsy Mathematical functions Medicine/Public Health Methodology Methods Neurological disorders Original Paper Patients Principal components analysis R & D/Technology Policy Robustness Seizures Support vector machines Wavelet transforms |
title | A robust methodology for classification of epileptic seizures in EEG signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20methodology%20for%20classification%20of%20epileptic%20seizures%20in%20EEG%20signals&rft.jtitle=Health%20and%20technology&rft.au=Tzimourta,%20Katerina%20D.&rft.date=2019-03-01&rft.volume=9&rft.issue=2&rft.spage=135&rft.epage=142&rft.pages=135-142&rft.issn=2190-7188&rft.eissn=2190-7196&rft_id=info:doi/10.1007/s12553-018-0265-z&rft_dat=%3Cproquest_cross%3E2919598006%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919598006&rft_id=info:pmid/&rfr_iscdi=true |