Loading…

A robust methodology for classification of epileptic seizures in EEG signals

Drug inefficiency in patients with refractory seizures renders epilepsy a life-threatening and challenging brain disorder and stresses the need for accurate seizure detection and prediction methods and more personalized closed-loop treatment systems. In this paper, a multicenter methodology for auto...

Full description

Saved in:
Bibliographic Details
Published in:Health and technology 2019-03, Vol.9 (2), p.135-142
Main Authors: Tzimourta, Katerina D., Tzallas, Alexandros T., Giannakeas, Nikolaos, Astrakas, Loukas G., Tsalikakis, Dimitrios G., Angelidis, Pantelis, Tsipouras, Markos G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73
cites cdi_FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73
container_end_page 142
container_issue 2
container_start_page 135
container_title Health and technology
container_volume 9
creator Tzimourta, Katerina D.
Tzallas, Alexandros T.
Giannakeas, Nikolaos
Astrakas, Loukas G.
Tsalikakis, Dimitrios G.
Angelidis, Pantelis
Tsipouras, Markos G.
description Drug inefficiency in patients with refractory seizures renders epilepsy a life-threatening and challenging brain disorder and stresses the need for accurate seizure detection and prediction methods and more personalized closed-loop treatment systems. In this paper, a multicenter methodology for automated seizure detection based on Discrete Wavelet Transform (DWT) is presented. A decomposition of 5 levels is applied in each EEG segment and five features are extracted from the wavelet coefficients. The extracted feature vector is used to train a Random Forest classifier and discriminate between ictal and interictal data. EEG recordings from the database of University of Bonn and the database of the University Hospital of Freiburg were employed, in an attempt to test the efficiency and robustness of the method. Classification results in both databases are significant, reaching accuracy above 95% and confirming the robustness of the methodology. Sensitivity and False Positive Rate for the Freiburg database reached 99.74% and 0.21/h respectively.
doi_str_mv 10.1007/s12553-018-0265-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919598006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919598006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EElXpD2CzxGx4TmonHquqFKRKLDBbrvNcXKVxsJOh-fWkCoKJt9wb7k6nj5B7Do8coHhKPBMiZ8BLBpkUbLgis4wrYAVX8vr3L8tbskjpCOMJLtQyn5Hdisaw71NHT9h9hirU4XCmLkRqa5OSd96azoeGBkex9TW2nbc0oR_6iIn6hm42W5r8oTF1uiM3bhRc_OicfDxv3tcvbPe2fV2vdszmXHYMK1NIEHuL1lV8WUKeSaPAmD2IUqmlklgYV3BpXCXRcqkKJ51CU8nKoivyOXmYetsYvnpMnT6GPl4W6ExxJVQJIEcXn1w2hpQiOt1GfzLxrDnoCzc9cdMjN33hpocxk02ZNHqbA8a_5v9D3xDVcYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919598006</pqid></control><display><type>article</type><title>A robust methodology for classification of epileptic seizures in EEG signals</title><source>Springer Link</source><creator>Tzimourta, Katerina D. ; Tzallas, Alexandros T. ; Giannakeas, Nikolaos ; Astrakas, Loukas G. ; Tsalikakis, Dimitrios G. ; Angelidis, Pantelis ; Tsipouras, Markos G.</creator><creatorcontrib>Tzimourta, Katerina D. ; Tzallas, Alexandros T. ; Giannakeas, Nikolaos ; Astrakas, Loukas G. ; Tsalikakis, Dimitrios G. ; Angelidis, Pantelis ; Tsipouras, Markos G.</creatorcontrib><description>Drug inefficiency in patients with refractory seizures renders epilepsy a life-threatening and challenging brain disorder and stresses the need for accurate seizure detection and prediction methods and more personalized closed-loop treatment systems. In this paper, a multicenter methodology for automated seizure detection based on Discrete Wavelet Transform (DWT) is presented. A decomposition of 5 levels is applied in each EEG segment and five features are extracted from the wavelet coefficients. The extracted feature vector is used to train a Random Forest classifier and discriminate between ictal and interictal data. EEG recordings from the database of University of Bonn and the database of the University Hospital of Freiburg were employed, in an attempt to test the efficiency and robustness of the method. Classification results in both databases are significant, reaching accuracy above 95% and confirming the robustness of the methodology. Sensitivity and False Positive Rate for the Freiburg database reached 99.74% and 0.21/h respectively.</description><identifier>ISSN: 2190-7188</identifier><identifier>EISSN: 2190-7196</identifier><identifier>DOI: 10.1007/s12553-018-0265-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Automation ; Bandwidths ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Brain research ; Classification ; Closed loops ; Computational Biology/Bioinformatics ; Convulsions &amp; seizures ; Discrete Wavelet Transform ; Electroencephalography ; Engineering ; Epilepsy ; Mathematical functions ; Medicine/Public Health ; Methodology ; Methods ; Neurological disorders ; Original Paper ; Patients ; Principal components analysis ; R &amp; D/Technology Policy ; Robustness ; Seizures ; Support vector machines ; Wavelet transforms</subject><ispartof>Health and technology, 2019-03, Vol.9 (2), p.135-142</ispartof><rights>IUPESM and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>IUPESM and Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73</citedby><cites>FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tzimourta, Katerina D.</creatorcontrib><creatorcontrib>Tzallas, Alexandros T.</creatorcontrib><creatorcontrib>Giannakeas, Nikolaos</creatorcontrib><creatorcontrib>Astrakas, Loukas G.</creatorcontrib><creatorcontrib>Tsalikakis, Dimitrios G.</creatorcontrib><creatorcontrib>Angelidis, Pantelis</creatorcontrib><creatorcontrib>Tsipouras, Markos G.</creatorcontrib><title>A robust methodology for classification of epileptic seizures in EEG signals</title><title>Health and technology</title><addtitle>Health Technol</addtitle><description>Drug inefficiency in patients with refractory seizures renders epilepsy a life-threatening and challenging brain disorder and stresses the need for accurate seizure detection and prediction methods and more personalized closed-loop treatment systems. In this paper, a multicenter methodology for automated seizure detection based on Discrete Wavelet Transform (DWT) is presented. A decomposition of 5 levels is applied in each EEG segment and five features are extracted from the wavelet coefficients. The extracted feature vector is used to train a Random Forest classifier and discriminate between ictal and interictal data. EEG recordings from the database of University of Bonn and the database of the University Hospital of Freiburg were employed, in an attempt to test the efficiency and robustness of the method. Classification results in both databases are significant, reaching accuracy above 95% and confirming the robustness of the methodology. Sensitivity and False Positive Rate for the Freiburg database reached 99.74% and 0.21/h respectively.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Bandwidths</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Brain research</subject><subject>Classification</subject><subject>Closed loops</subject><subject>Computational Biology/Bioinformatics</subject><subject>Convulsions &amp; seizures</subject><subject>Discrete Wavelet Transform</subject><subject>Electroencephalography</subject><subject>Engineering</subject><subject>Epilepsy</subject><subject>Mathematical functions</subject><subject>Medicine/Public Health</subject><subject>Methodology</subject><subject>Methods</subject><subject>Neurological disorders</subject><subject>Original Paper</subject><subject>Patients</subject><subject>Principal components analysis</subject><subject>R &amp; D/Technology Policy</subject><subject>Robustness</subject><subject>Seizures</subject><subject>Support vector machines</subject><subject>Wavelet transforms</subject><issn>2190-7188</issn><issn>2190-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EElXpD2CzxGx4TmonHquqFKRKLDBbrvNcXKVxsJOh-fWkCoKJt9wb7k6nj5B7Do8coHhKPBMiZ8BLBpkUbLgis4wrYAVX8vr3L8tbskjpCOMJLtQyn5Hdisaw71NHT9h9hirU4XCmLkRqa5OSd96azoeGBkex9TW2nbc0oR_6iIn6hm42W5r8oTF1uiM3bhRc_OicfDxv3tcvbPe2fV2vdszmXHYMK1NIEHuL1lV8WUKeSaPAmD2IUqmlklgYV3BpXCXRcqkKJ51CU8nKoivyOXmYetsYvnpMnT6GPl4W6ExxJVQJIEcXn1w2hpQiOt1GfzLxrDnoCzc9cdMjN33hpocxk02ZNHqbA8a_5v9D3xDVcYg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Tzimourta, Katerina D.</creator><creator>Tzallas, Alexandros T.</creator><creator>Giannakeas, Nikolaos</creator><creator>Astrakas, Loukas G.</creator><creator>Tsalikakis, Dimitrios G.</creator><creator>Angelidis, Pantelis</creator><creator>Tsipouras, Markos G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190301</creationdate><title>A robust methodology for classification of epileptic seizures in EEG signals</title><author>Tzimourta, Katerina D. ; Tzallas, Alexandros T. ; Giannakeas, Nikolaos ; Astrakas, Loukas G. ; Tsalikakis, Dimitrios G. ; Angelidis, Pantelis ; Tsipouras, Markos G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Bandwidths</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Brain research</topic><topic>Classification</topic><topic>Closed loops</topic><topic>Computational Biology/Bioinformatics</topic><topic>Convulsions &amp; seizures</topic><topic>Discrete Wavelet Transform</topic><topic>Electroencephalography</topic><topic>Engineering</topic><topic>Epilepsy</topic><topic>Mathematical functions</topic><topic>Medicine/Public Health</topic><topic>Methodology</topic><topic>Methods</topic><topic>Neurological disorders</topic><topic>Original Paper</topic><topic>Patients</topic><topic>Principal components analysis</topic><topic>R &amp; D/Technology Policy</topic><topic>Robustness</topic><topic>Seizures</topic><topic>Support vector machines</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Tzimourta, Katerina D.</creatorcontrib><creatorcontrib>Tzallas, Alexandros T.</creatorcontrib><creatorcontrib>Giannakeas, Nikolaos</creatorcontrib><creatorcontrib>Astrakas, Loukas G.</creatorcontrib><creatorcontrib>Tsalikakis, Dimitrios G.</creatorcontrib><creatorcontrib>Angelidis, Pantelis</creatorcontrib><creatorcontrib>Tsipouras, Markos G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Health and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzimourta, Katerina D.</au><au>Tzallas, Alexandros T.</au><au>Giannakeas, Nikolaos</au><au>Astrakas, Loukas G.</au><au>Tsalikakis, Dimitrios G.</au><au>Angelidis, Pantelis</au><au>Tsipouras, Markos G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust methodology for classification of epileptic seizures in EEG signals</atitle><jtitle>Health and technology</jtitle><stitle>Health Technol</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>9</volume><issue>2</issue><spage>135</spage><epage>142</epage><pages>135-142</pages><issn>2190-7188</issn><eissn>2190-7196</eissn><abstract>Drug inefficiency in patients with refractory seizures renders epilepsy a life-threatening and challenging brain disorder and stresses the need for accurate seizure detection and prediction methods and more personalized closed-loop treatment systems. In this paper, a multicenter methodology for automated seizure detection based on Discrete Wavelet Transform (DWT) is presented. A decomposition of 5 levels is applied in each EEG segment and five features are extracted from the wavelet coefficients. The extracted feature vector is used to train a Random Forest classifier and discriminate between ictal and interictal data. EEG recordings from the database of University of Bonn and the database of the University Hospital of Freiburg were employed, in an attempt to test the efficiency and robustness of the method. Classification results in both databases are significant, reaching accuracy above 95% and confirming the robustness of the methodology. Sensitivity and False Positive Rate for the Freiburg database reached 99.74% and 0.21/h respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12553-018-0265-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-7188
ispartof Health and technology, 2019-03, Vol.9 (2), p.135-142
issn 2190-7188
2190-7196
language eng
recordid cdi_proquest_journals_2919598006
source Springer Link
subjects Accuracy
Automation
Bandwidths
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Brain research
Classification
Closed loops
Computational Biology/Bioinformatics
Convulsions & seizures
Discrete Wavelet Transform
Electroencephalography
Engineering
Epilepsy
Mathematical functions
Medicine/Public Health
Methodology
Methods
Neurological disorders
Original Paper
Patients
Principal components analysis
R & D/Technology Policy
Robustness
Seizures
Support vector machines
Wavelet transforms
title A robust methodology for classification of epileptic seizures in EEG signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20methodology%20for%20classification%20of%20epileptic%20seizures%20in%20EEG%20signals&rft.jtitle=Health%20and%20technology&rft.au=Tzimourta,%20Katerina%20D.&rft.date=2019-03-01&rft.volume=9&rft.issue=2&rft.spage=135&rft.epage=142&rft.pages=135-142&rft.issn=2190-7188&rft.eissn=2190-7196&rft_id=info:doi/10.1007/s12553-018-0265-z&rft_dat=%3Cproquest_cross%3E2919598006%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-eda7605bcecfd1480326a90aab05899496e7af716afd6ec1697f6f9ead6dcef73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919598006&rft_id=info:pmid/&rfr_iscdi=true